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ABSTRACT

Machine learning (ML) models can provide precise predic-

tions, but are usually—compared to more traditional statisti-

cal methods such as linear regression—non-interpretable to

humans. Research has put forth Explainable Arti�cial Intelli-

gence (XAI) techniques that represent patterns discovered by

ML in a human-readable way. One application area that can

bene�t from high predictive performance and the explana-

tion of patterns in data is energy benchmarking. In the �eld,

feedback of energy benchmarks has so far often been lim-

ited to a single performance score. Thus, it remains unclear

to benchmark recipients which characteristics a�ect their

speci�c consumption. Taking a linear regression model as

baseline, this thesis tests the applicability of XAI for energy

benchmarking in the context of domestic electricity use. The

results of this work show that XAI is able to identify building

and household characteristics that are, according to an ML

model, relevant for electricity consumption, while o�ering

higher predictive performance than a statistical approach.

1 INTRODUCTION

Reducing electricity demand is one of the key challenges for the
future [6]. An element that has already proven to be e�ective in
motivating savings is benchmarking [9, 12]. However, for energy
benchmarks, it is often not clear which factors in�uence a speci�c
performance [2]. Recipients are therefore left with insu�cient infor-
mation to decide which e�ciency measures should be implemented.

Statistical approaches such as linear regression have long been
used to explain factors that in�uence electricity consumption [7, 8].
Though bene�cial, linear approaches su�er from poor modeling
capabilities. Recently, ML has made progress in improving methods
[4]. Although the predictive power of ML is high, such models come
with a lack of transparency. The �eld of research dealing with this
problem is called XAI [3]. XAI aims to improve the transparency of
complex machine learning models that o�er high prediction quality
but are di�cult for humans to interpret [1]. However, the potential
of such methods to improve benchmarks through explanations in
domestic electricity consumption has not yet been fully exploited.

2 RESEARCH QUESTIONS AND APPROACH

This thesis examines two research questions using data from 1,262
Irish households [5]. First, the explainability of electricity consump-
tion based on building and household characteristics (e.g., �oor
area, number of residents) using a linear approach. In doing so, a
multiple linear regression (MLR) model is applied to determine the
explanatory power of the regressors and the extent to which an
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MLR can explain the variance in energy use intensity (EUI), a per-
formance measure often used in energy benchmarking to compare
energy consumption. Hence, the �rst research question (RQ) is:

RQ1: To what extent can the domestic electricity consumption be

explained by linear regression using building and household charac-

teristics?

Second, building on RQ1, this work explores the di�erences
between the explanations of an MLR model and an XAI method.
Thus, the second RQ is:

RQ2: How does the explanation of an XAI approach for a domestic

electricity consumption based on non-linear machine learning di�er

from the explanation of a linear regression model?

To answer RQ2, I apply non-linear ML in combination with the
XAI method Shapley Additive Explanations (SHAP) [10]. For the
comparison of the explanations of both methods, this work relies on
the properties predictive accuracy, consistency, and �delity described
by [13].

3 RESULTS

Concerning RQ1, the analysis shows that an MLR model without
feature interactions explains 54.1% of the variance (Adjusted R2) in
the EUI and the model with hand-crafted second-order interactions
explains 55.9%. When comparing the explanations of both methods
within RQ2, I �nd in terms of predictive accuracy that XAI combined
with ML o�ers up to 8.69% lower Mean Absolute Error (MAE) than
MLR when estimating the EUI (XGBoost by [4] provides the best
results). The consistency analysis reveals that both methods explain
overall similarly and thus estimate similar contributions for a given
prediction. High consistency is desirable, as consistent explanations
are considered more robust and meaningful [11]. The measurement
of faithfulness uses the perturbation of feature values in order to
blur the in�uence of important features and, thus, to test to what
extent the prediction shifts in the opposite direction. The analysis
of faithfulness shows that for both methods the prediction shifts in
the opposite direction after the feature values have been perturbed—
the statistical MLR model and XAI approach can therefore be said
to be faithful.

4 CONCLUSION

The results of this work show that non-linear ML combined with
SHAP is a suitable approach to explain domestic electricity con-
sumption and o�ers higher predictive performance compared to
a linear model, while maintaining explainability. This may lead
to new insights on the consumer side, promotes the adoption of
energy e�ciency measures, and thus fosters resource conservation
in the long term. Furthermore, this work demonstrates the power
of XAI methods to provide explanations for energy consumption
and o�ers several areas for future research.
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