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Abstract

Forecasting electricity demand is essential to build long-term power market models. Current
long-term forecasts are mainly politically driven analysis, excluding the underlying fundamental
dynamics. Focusing on the Base Metals, Chemicals, Pulp & Paper and Non-metallic Minerals
industries in Germany, France, Belgium, the Netherlands and Austria, the present thesis
proposes the application of a three-factor Cobb-Douglas production function to model the
output elasticities of the use of electricity consumption to capital, labour and raw materials.
Different model setups are discussed and for each country and sector, one model is implemented,
reflecting the most important inputs among the three factors. Applying the elasticities from
the individual models and making assumptions on the development of the input variables, five
scenarios for industrial electricity consumption are designed. The modelling results suggest
that the Cobb-Douglas function is well suited to estimate industrial electricity consumption.
Further, the analysis allows for a fundamental understanding of the most significant drivers
of industrial electricity demand, and it reveals the relation between the use of the production
factors and electricity consumption. Using the scenarios, strengths and weaknesses of the
present approach are discussed, and perspectives for future research identified.
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Zusammenfassung

Die Vorhersage der Stromnachfrage ist für den Aufbau langfristiger Strommarktmodelle un-
erlässlich. Aktuelle langfristige Prognosen sind hauptsächlich auf politischen Maßnahmen
basierte Analysen, die die zugrunde liegende fundamentale Dynamik vernachlässigen. Die
vorliegende Arbeit konzentriert sich auf die Industriezweige Basismetalle, Chemikalien, Zell-
stoff & Papier sowie Nichtmetallische Mineralien in Deutschland, Frankreich, Belgien, den
Niederlanden und Österreich, und schlägt die Anwendung einer Drei-Faktor-Cobb-Douglas-
Produktionsfunktion vor, um die Elastizitäten des Stromverbrauchs bezüglich Kapital, Arbeit
und Rohstoffe zu modellieren. Es werden verschiedene Modelle diskutiert, und für jedes Land
und jeden Sektor wird ein Modell implementiert, das die wichtigsten Inputs unter den drei
Faktoren widerspiegelt. Unter Anwendung der Elastizitäten aus den einzelnen Modellen und
unter Zugrundelegung von Annahmen über die Entwicklung der Inputvariablen werden fünf
Szenarien für den industriellen Stromverbrauch entworfen. Die Modellierungsergebnisse legen
nahe, dass die Cobb-Douglas-Funktion gut geeignet ist, den industriellen Stromverbrauch zu
schätzen. Darüber hinaus ermöglicht die Analyse ein grundlegendes Verständnis der wichtigs-
ten Treiber der industriellen Stromnachfrage und zeigt die Beziehung zwischen dem Einsatz
der Produktionsfaktoren und dem Stromverbrauch auf. Anhand der Szenarien werden die Stär-
ken und Schwächen des gegenwärtigen Ansatzes diskutiert und Perspektiven für zukünftige
Forschung aufgezeigt.

Stichworte: Industrie, Stromnachfrage, Prognosen, Cobb-Douglas, Szenarien
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1. Introduction

1.1. Motivation

In energy economics, long-term forecasts play an important role for utilities planning ahead.
Given average lifetimes of 46 years for coal power plants (Cui et al. 2019) and 40 years for
nuclear power plants (Cattant, Crusset, and Féron 2008), plant operators have a need for
information about future electricity demand.

Further, the European Union (EU) is currently discussing the Green Deal proposed by the
European Commission (EC), aiming for climate neutrality by 2050 (EC 2019). In order to
assess the implications of its political measures, and the need to implement further policies,
quantification of future energy and electricity demand is crucial.

In 2017, the industrial sector in the EU-28 countries consumed a total of 89.5 Million tonnes of
oil equivalent (Mtoe) of electricity, or 37.7% of total electricity consumption. As displayed in
figure 1.1.1, the share of industry in final electricity consumption has decreased since 1991;
however, absolute electricity consumption is increasing. This shows very clearly the need
to establish a reliable industrial electricity demand forecast on the long-term: For energy
utilities to plan their power plant fleet of the future, and for politics to establish suitable policies
ensuring that long-term climate goals are met.

1.2. Objectives

The present work aims to establish an industrial electricity demand forecast through 2050. To
do so, historical trends will be analysed using a Cobb-Douglas production function, including
data for use of capital, labour, and materials. Based on this analysis, sensitivities of electricity
consumption to changes in the input variables are calculated. Applying these coefficients and
making assumptions on the future development of these inputs, a forecast for future electricity
demand is established. This demand forecast is then challenged by different scenarios, which
are based on potential development paths towards EU climate goals.

In the following chapter 2, the geographical, industrial and timely scope and limits of the
work are introduced. Chapter 3 will give an overview of scientific and other works aiming
to perform demand forecasts, or implementing Cobb-Douglas production functions. Chapter

1
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Figure 1.1.1.: Final electricity consumption by sector, EU-28 countries, based on Enerdata 2020

4 defines the theoretical model, and outlines the implementation of the model. In chapter 5,
the individual models are set up by sector and country and results of the models discussed.
Chapter 6 establishes the base forecasts. These base forecasts are challenged and diversified in
four additional scenarios, as described in chapter 7. Finally, chapter 8 summarises the findings,
discusses the limits of the work and gives an outlook on future research potential.

2



2. Scope of the work

The aim of this analysis is to forecast industrial electricity demand in the EU. However, given
the time frame of the project, it was decided to limit the scope of the analysis to specific
countries and the most important (i.e. electricity-intensive) industries.

Applying the method used in this analysis, the scope can be extended to include further
countries, not only in Europe, but worldwide. However, model performance will depend on
the availability of data and the structure of a given industry, which should be reflected in the
model setup.

2.1. Countries

At the focus of this study are the five Western European countries Germany (DE), France (FR),
Belgium (BE), Austria (AT) and the Netherlands (NL). These countries were chosen based on
the assumption that the industrial sectors in these countries resembled one another more than
if compared to e.g. Southern or Eastern European countries.

The analysis can be extended to more countries, applying the same methodology. However,
availability of reliable historical data is an issue for many countries. Especially smaller countries
tend to report with less detail. Further, European competition regulation sometimes prevents
the publication of some data, especially by the European Statistical Office (Eurostat). This will
have implications for the five countries in this work as well, as will be noted at a later point.

2.2. Industries

The selection of industries is designed to reflect the structure of the Odyssee Online Database1.
The industries are classified according to their Statistical Classification of Economic Activities
in the European Community (NACE) rev. 2 code (Eurostat 2008). Industries included in this

1 The Odyssee Database is an online tool provided by the consulting firm Enerdata and co-funded by the
Horizon 2020 programme of the EU. It gathers data from public sources, such as national institutions or
the European Statistical Office Eurostat. The data is made available free of charge on the project website
(https://www.odyssee-mure.eu/).

3
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2. Scope of the work

analysis are manufacturing industries (section C) from the NACE rev. 2 divisions 10-33. This
includes the sectors as shown in table 2.2.1.

Industrial branch

NACE rev. 2

division

Share of electricity

consumption

Food, beverage and tobacco 10-12 10.9%
Textiles, clothing, leather 13-15 2.1%
Wood, wood products 16 2.2%
Paper, pulp and printing products 17-18 10.0%
Chemicals 20-21 23.9%
Non-metallic minerals 23 6.4%
Base metals: Iron and steel,
non-ferrous metals 24 19.2%
Machinery and metals products 25-28, 33 11.8%
Transport equipment 29-30 6.3%
Other manufacturing 22-23, 31-32 7.3%

Table 2.2.1.: Industrial activities according to NACE rev. 2 classification, and share of electricity
consumption of the sectors analysed in this study, in DE, FR, BE, NL, AT, percentage
of total from 1991-2017, according to data from Enerdata 2020

However, not all industries mentioned above are equally suitable for conduction of an analysis
such as the one implemented in this work. Some sectors are very diverse (e.g. the Machinery
and Metals Products sector: products range from metal tubes over computers and electrical
equipment to industrial machines). Given that the electricity consumption for those sectors is
reported as an aggregated figure, and not split by sub-sectors, implementation of a coherent
model proved to exceed the limits of this work.

The scope was therefore reduced to the following industries: Chemicals, Base Metals, Pulp &
Paper and Non-metallic Minerals, which all together account for more than 60% of historical
electricity consumption in the whole industrial sector of the five countries.
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3. Literature Review

Forecasting European energy demand in recent years was mostly the subject of political studies
by the EU. In 2012, the EC published its Energy Roadmap 2050 (EC 2012). In seven scenarios,
the Roadmap describes possible development paths of energy consumption in the EU until
2050. While the Roadmap provides a wide overview of potential scenarios, those are policy-
driven, focus on decarbonisation policies without exploring the actual developments, and
lack the influence of exogenous factors such as the development and implementation of new
technologies. Further, the focus of the Roadmap was overall energy demand, without a specific
analysis of the electricity demand.

More recently, the EC published its 2050 base case (EC 2016). The study provides a more detailed
view on long-term final energy demand in different sectors of the EU economy. However, the
study is again largely based on an impact assessment of individual energy policies.

While the International Energy Agency (IEA)’s World Energy Outlook 2018 (IEA 2018b) is
only partly publicly accessible, the results published by the IEA suggest that the main driver
of scenarios in the study remain international policies. On electricity demand in the EU, no
results are available.

Scientific literature on the future of the European energy landscape so far seems to be scarce.
Beneki and Silva 2013 choose a statistical time series modelling approach to estimate future
energy demand in the EU countries. Their analysis however does not provide reasoning for
the drivers of energy (and even less electricity) demand. Pilli-Sihvola et al. 2010 provide an
analysis of the impact of increased temperatures on electricity consumption in five European
countries. At the beginning of the century, Sun 2001 published a forecast of future European
energy demand by 2010, using a decomposition approach.

For other geographical areas, there are examples for long-term projections of energy demand.
Adams and Shachmurove 2008 in their paper modelled sensitivities of the Chinese energy
balance to specific independent variables, such as Gross Domestic Product (GDP) growth,
population and number of motor vehicles. Adeyemi and Hunt 2007 in their paper are closer to
the geographical and sectoral scope of this work. They set up a model to forecast industrial
energy demand (however not electricity demand) in the Organisation for Economic Cooperation
and Development (OECD) countries, using non-linear least squares optimisation, to allow for
a lagged price response. They further include data on income and a time dummy to reflect
technical efficiency gains.
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3. Literature Review

Other authors set up models using different modelling techniques, such as Genetic Algorithm
Modelling (Ceylan and Ozturk 2004, Turkish energy demand). Notably, Chui et al. 2009 compare
different modelling techniques (autoregressive, simple linear and multiple linear regression),
among which multiple linear regression was found to deliver the best estimate. The input
variables in their model were GDP, employment, number of dwellings, population, the year
(thus a time-dummy equivalent), and Heating- and Cooling-Degree-Days.1

Multiple linear regression was therefore chosen to model electricity demand in the present work.
The choice of input parameters, however, had to be adapted to the industrial sectors. A very
wide-spread tool in economics is the use of a Cobb-Douglas production function, established
in Cobb and Douglas 1928, estimating output based on a set of input parameters, mostly labour
and capital. In the context of energy economics, the Cobb-Douglas function, however, has
not been tested extensively; Wei 2007, based on Saunders 2000, set up a production model
incorporating energy, but as an input factor (in addition to labour and capital), rather than as
an output. A similar approach was used in Yuan, Liu, and Wu 2009, estimating energy intensity,
i.e. energy used per output unit, in the Chinese industrial sector. The approach used in the
present work, on the other hand, is fundamentally different: Energy is not considered as an
input into the Cobb-Douglas production function in order to estimate production levels, but
as the output variable. Von Hirschhausen and Andres 2000 used a Cobb-Douglas function to
predict Chinese electricity demand, thus a similar approach to the one proposed in this work.
Their method was focused on macro-economic factors, such as GDP, electricity prices and
historical electricity consumption.

1 For further reading, Suganthi and Samuel 2012 present an overview of scientific energy demand forecasting
models.
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4. Methodology

The forecast, as explained before, is based on a detailed (qualitative) analysis of the production
processes and dynamics in a sector. In a second step, the regression models for the specific
sectors are set up, according to the model described in section 4.1. The electricity forecast
by sector and country is based on the results of these models and assumptions on future
development of the input factors, as described in section 4.2.

4.1. Basic Model Setup

The model is set up as a three factor Cobb-Douglas production function. This setup was used e.g.
by Echevarria 1998 to estimate agricultural production, using as input factors – the so-called
independent variables – Capital, Labour, and Land.

Setting up the model as a Cobb-Douglas production function provides several advantages which
are described below. Nonetheless, it is important to note that this model was not designed to
model electricity demand, but production output. Energy, and more specifically electricity, in
the original model, would be an input rather than an output. But energy and raw materials, in
most cases, are not substitutes for one another, but rather complements: The transformation of
input into output in all industries is related to more or less energy-intensive processes, allowing
for this transformation. And the use of electricity alone does not produce outputs. Further,
it seems intuitive to assume that a profit-seeking industrial would not consume more raw
materials than can be transformed into products using energy - or, more specifically, he does
not produce (significant amounts of) waste. It therefore seems reasonable to assume that energy
(here: electricity) consumption can be modelled using a Cobb-Douglas production function,
while accounting for efficiency gains as explained below. In a different context, the adapted
Cobb-Douglas model was used by Von Hirschhausen and Andres 2000 to model electricity
demand.

The following sections describe model design, the reasoning for using the Cobb-Douglas
function, and detail the use of specific parameters.
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4. Methodology

4.1.1. Cobb-Douglas production function

The setup used in this thesis takes into account Capital (K), Labour (L), and Raw Materials (M)
used in the specific industry. The basic setup of the model is as follows:

. = V ∗  U1 ∗ !U2 ∗"U3 ∗ CU4, (4.1)

where Y denotes output, or - in this case - final electricity consumption, V is the technology
level, and U8, 8n{1, 2, 3} denote output elasticities of the independent variables Capital, Labour,
Raw Materials and the time dummy t. The time dummy is a variable increasing its value with
every time step (i.e. year) and will be introduced in further detail below.

Modelling using a Cobb-Douglas production function provides several advantages:

Interpretability

It seems intuitive to assume that a company - or an industry - does not produce output or use
energy, when neither capital, nor labour or raw materials are used.

Complementary input factors

It is assumed that only combining the three inputs a product is produced. This might not
apply in the case of energy consumption; however, in this study, it is assumed that companies
self-optimise to a certain degree, i.e. if they have production capacities and use labour, they
also use raw materials and consequently use energy. This assumption seems valid especially in
the case of an analysis of a whole industry is analysed, and not of specific companies, which is
the case for this study.

Deduction of output elasticities

The Cobb-Douglas production function allows to draw direct conclusions on output elasticities,
i.e. how output - or electricity consumption - depend on the use of input factors. For example,
it seems intuitive to say that, if more raw materials are used, output should increase as well,
suggesting an output elasticity of U > 0.

Note that this relation is not always obvious in the case of an analysis of energy consumption,
as section 5.4 will show.. It will therefore be crucial for this study to understand the dynamics
in the production processes of the different industries, and the implications for energy and
electricity demand, in order to ensure a correct interpretation of model results.

Further, it should be noted that the present model does not assume constant returns to scale
(
∑
U8 = 1) or any other constraint with regards to the output elasticities. These restrictions

were avoided as, a priori, no assessment on economies of scale could be made, particularly with
regards to the different countries and industries analysed here. In general, the model allows for
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4. Methodology

negative coefficients as well, as some input factors tend to decrease electricity consumption, as
the country models will show.

Applying the natural logarithm to both sides of the equation yields the so-called trans-log
model:

;=(. ) = 2 + U1 ∗ ;=( ) + U2 ∗ ;=(!) + U3 ∗ ;=(") + U4 ∗ ;=(C), (4.2)

where c = ;=(V) denotes the intercept, or technology level.

The model coefficients U can be calculated by applying Ordinary Least Squares (OLS) regression.
In this case, the Statsmodel package for Python (Seabold and Perktold 2010) was used to fit the
trans-log model. The Cobb-Douglas production function yields the significant advantage of
providing direct conclusions on output elasticities from model coefficients. E.g., for a positive
coefficient U for raw materials, output (i.e. electricity consumption) increases with increased
raw material input. This allows for high interpretability when fitting the model. Another
advantage of the trans-log model is the smoothing of spikes in the historical training data.

It should be noted that only those variables which were statistically significant (p-value ≤ 0.05)
were considered in the model setup. If for a given country and industry, one of the independent
variables was insignificant, it was excluded from the model (unless stated otherwise). For all
models, interpretability had to be given for the model to be considered valid.1

4.1.2. Parameters

While the basic setup of the Cobb-Douglas model is arguably straight-forward, the use of some
of the parameters is more controversial. This section describes the reasoning behind the use of
different parameters of the model described above.

On the use of a time dummy

Very often, it is impossible to quantify certain aspects of reality in a model. Examples can be
energy efficiency measures, general electrification trends or others. Sometimes, these effects
can be assumed to develop linearly over time. This can be reflected by a time dummy; it is
a variable which increases by one unit for every period of the analysis time frame. When
multiplied with the same coefficient in every period, the effect of the variable in- or decreases
steadily over time, depending on the sign of the coefficient.

Such time dummies are not uncommon in scientific literature when setting up regression
models, especially in the energy field (most often representing difficult-to-quantify energy

1 I.e. factors represented by the model with a specific factor for which there was no logical interpretation were
excluded despite potentially being statistically significant. The basic model setup in section 5.1.2 will discuss
different setups.
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efficiency gains). Examples from the energy sector can be found, among others, in the papers
by Griffin and Schulman 2005 and Adeyemi and Hunt 2007.

That said, the interpretability of the time dummy is not always obvious, neither is it consistent
for different models. For some countries and industries, “negative” (electricity consumption de-
creasing) effects like efficiency gains may outweigh “positive” effects like general electrification
measures; for others, it may be the other around; finally, both effects might offset. Therefore,
the time dummy was included in those models for which it proved to be statistically significant,
independent from the sign of its coefficient.

Finally, with regards to the Cobb-Douglas function, one final note appears important: The
Cobb-Douglas production function considers output elasticities to be constant over time. This
assumption is called constant technology. Over time, the sensitivity to changes in the inputs
does not change. Assuming constant inputs, output will therefore not change over time. This
assumption is somewhat relaxed by the introduction of the time dummy. While the output
elasticities are still considered constant, the impact of the time dummy is such that, given a
coefficient unequal to zero, and given a constant set of inputs, output does change over time,
according to the sign (positive/negative) of the time dummy.

On the use of an intercept

When setting up linear regression models, constants are usually included to represent constant
effects which are not otherwise represented in the model. In the context of industrial production,
this might be baseload power consumption which is independent of assets, labour and the use
of raw materials. Given the difficult interpretability of the constant, it was only included in
those models where it significantly improved the model fit, while being statistically significant.

The use of a constant has one advantage in setting up regression models, which is the validity
of the R2 value. When the constant is excluded from the model, it is modelled as “regression
through the origin” (when all independent variables are 0, and there is no constant going
into the equation, the dependent variable will be 0 and therefore in the origin of a thought
multi-dimensional coordinate system). This yields an “overfit” of the model, which leads to
unrealistically high values for R2 and adjusted R2 (T. O. Kvalseth and T. Kvalseth 2018).

However, the R2 value is only one possible way to measure the fit of a model (even though
probably the most well-known). Others include the F-Statistic of a model and its Log Likelihood
Function. In the basic setup of the model, the constant was therefore excluded in order to
ensure interpretability of the models. Models were then compared using their Log-Likelihood
Value (LLV) (note that different models cannot be compared using the LLV; however, the same
model in different configurations can be compared by their LLV).

On the use of rawmaterial inputs

Generally, it might seem more intuitive to use production output as an indicator for electricity
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consumption, rather than the input of raw materials. There are however two arguments in
favour of using raw materials over production.

From a theoretical point of view, the Cobb-Douglas production function tries to estimate
production output. Using products as an input would therefore turn the logic of production
around. Further, the consumption of raw materials in many cases is equivalent to, or at least
related to, production outputs and are therefore as good an indicator as products. One example
is the production of chlorine, which will be explained in detail in the section on the Chemicals
sector.

From the practical point of view, it is also important to note that, in many industries, there is a
multitude of different products. On the other hand, there are very often only a few main input
materials used in an industry, significantly reducing the effort of selecting the most important
factors. Once again, a very illustrative example is the Chemicals sector, where, from ten main
raw materials, thousands of different final products are manufactured.

4.2. Forecasting and Scenarios

The forecasts are based on the results found for the country- and sector-specific Cobb-Douglas
models. As these results provide output elasticities to changes in the input parameters, future
electricity demand can be forecast if valid assumptions on the future development of the
independent variables are made.

Therefore, for each industrial sector, a specific section will discuss the assumptions made for
future development of the input variables in detail. Whenever possible, this thesis will take
external sources as a base for the calculation. For all sectors, investment forecasts from OE
2020 were used to estimate development of capital (assets). Further, Eurostat 2020 projections
were used for population forecasts.

Developments displayed in the Forecasting chapter 6 represent the development based on
historical trends and base case assumptions for external sources, and therefore could be called
the "Business As Usual (BAU)" scenario. Chapter 7 presents alternative pathways for these
developments, applying the same methodology. These scenarios are then used to evaluate the
strenghts and weaknesses of the applied methodology, using examples from the sectors in this
analysis.

The forecast will start in the year 2018 and calculate results for every year through 2050.
Up to 2017, training data (i.e. historical electricity consumption data) was available for all
countries. For some input variables, data for 2018 and 2019 was available. If that was the
case, the assumptions were applied only after the last year for which data was available (ergo
officially reported data was used for 2018 and 2019).

Note that the forecasting method used in this work cannot or only partly reflect trends or
new technologies that were not observed in the past. The introduction of new, more or less
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electricity-intensive production technologies is therefore not part of the forecasts. For the
specific sectors, structural changes and new technologies will therefore be mentioned in the
sector-specific sections.
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5. Models and results

This chapter introduces the specific model setups for all industrial sectors and countries
specified in the scope of the study (see chapter 2). Section 5.5 provides cross-sectoral insights
into the significance of the individual inputs, comparing the relative impact of independent
variables on electricity consumption.

5.1. Base Metals

The basic model was set up using the German Base Metals sector as an example. This was done
for two main reasons:

• Power consumption: The Base Metals sector is one of the most energy- and power-
intensive sectors in the countries at the focus of this study. Between 1991 and 2017, the
Base Metals sector in the six countries consumed a total of 192 Mtoe, excelled only by
the chemicals sector (236 Mtoe, Enerdata 2020).

• Database: For the Base Metals sector, an extensive database is available from different
sources. This includes, among others, data on financial assets, employment and working
hours, raw material consumption and production output.

It should be noted that the Base Metals sector only includes the production of primary metals
(e.g. iron, steel, aluminium). More specifically, it does not include further processing of metals
to produce other goods, e.g. the automotive or machine building industries. For more detailed
information on the classification of industries see chapter 2.

5.1.1. Sector introduction

The Base Metals sector can be subdivided into iron and steel production on the one hand, and
non-ferrous metals (incl. e.g. aluminium and copper) production on the other. It should be
noted that there is no data available on assets and hours worked that distinguishes by the kind
of metal produced. Therefore, with the only variable differing between the two being raw
materials, splitting the sector did not seem to yield meaningful results.
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Table 5.1.1 shows the share of total electricity consumption of the two parts of the Base Metals
sector in each country, summed up from 1991-2017. It becomes evident that the production of
ferrous metals requires most of the electricity used in the sector, apart from the Netherlands
(to be explained in the country-specific analysis).

Country
Share of electricity consumption in Base Metals sector

Iron & steel Non-ferrous metals

Austria 74.5% 25.5%
Belgium 74.6% 25.4%
Germany 61.6% 38.4%
France 60.1% 39.9%
Netherlands 34.6% 65.4%

Table 5.1.1.: Split of electricity consumption between Iron & steel and Non-ferrous metals
sectors by country Enerdata 2020

Therefore, where necessary, the analysis focuses in a first step on the iron and steel production,
and only in a second step considers the production of non-ferrous metals.

The steel production process

There are three fundamental production processes in the iron and steel making industry –
primary steel, secondary steel and direct reduction routes –, using two different technologies:
Oxygen Blast Furnaces (OBF) and Electric Arc Furnaces (EAF) (Schumacher and Sands 2007).

As displayed in figure 5.1.1, electricity as a relevant input factor is used only in EAFs (s.
secondary steel route), which are highly electricity-intensive. Main raw material inputs in the
secondary steel route and the direct reduction route are scrap metals, in particular scrap steel,
and iron ore.

Concluding, we have learned that most of the electricity used in the Base Metals sector in most
countries is used in the production of iron and steel. Secondly, the main electricity consumers
in the production of iron and steel are EAFs. Therefore, the use of EAFs and scrap metals will
be at the core of the models for the Base Metals sector.

Note that there was no data available on the use of the different production routes, only on
the use of EAFs versus OBFs (data from Worldsteel). It is therefore not possible to distinguish
whether metal ores are mostly used in the primary steel route or in the direct reduction route. It
is however assumed, that direct reduction only plays an inferior role; consequently, the models
will focus on scrap steel wherever possible.

On a side note, the year 2009 was excluded from the analysis for all sectors. That year, the
financial crisis led to a significant decrease in industrial activity (and power consumption) in
all industrial sectors in all EU countries. Including this negative peak would lead to overfitting
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Figure 5.1.1.: Iron and steel production routes and technologies at the example of the German
steel industry, taken from Schumacher and Sands 2007

of results, as the model would try and fit the input variables to the value with highest variance
(i.e. this negative peak).

In the following sections, the model setup for the German Base Metals sector will be discussed,
followed by the models for the other countries. It will be described which independent variables
were used in the model, which of those were statistically significant and how the model was
optimised to best reflect reality. Finally, an interpretation of the model coefficients will be
given.

5.1.2. Basic model setup - Germany

The basic model was set up at the example of the German Base Metals sector. The statistical
database for this sector is extensive and well fit to set up a basic model, allowing to identify the
most important input variables and optimise the model. Note however that every model has
to be adapted to the specific structure of the country and sector. The data tested to set up the
basic model can be taken from table 5.1.2. Note that the data in this table exceeds the inputs
into a Cobb-Douglas production function. In order to set up the basic model, these variables
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were tested nonetheless. It was found that the three inputs Labour, Capital and Raw Materials
deliver the best results in terms of statistical significance, independence (from one another)
and model performance.

Subject Factor Source

Energy Energy consumption by fuel source Enerdata 2020
Capital Assets Destatis 2020

Invest Destatis 2020
Material use Scrap consumption Worldsteel 2020

Metal ores consumption Destatis 2020, Eurostat 2020
Coke and coked coal consumption Kohlenstatistik 2019

Labour Hours worked Destatis 2020
Employees Destatis 2020
Personnel costs Eurostat 2020

Production Steel production by technology Worldsteel 2020
Value added OECD 2020
Production index Enerdata 2020

Foreign trade Import values of scrap and metal ores WTO 2020
Demand Order index Destatis 2020
Prices Fuel prices (coal, gas, electricity) OE 2020

Carbon emission prices ICIS
Other Cold and hot degree days Eurostat 2020

Table 5.1.2.: Sources of input parameters tested in the setup phase of the German Base Metals
model, author’s own work

Approach

A regression model is designed to assess how one output variable (the dependent variable) can
be determined by different input variables (or independent variables). Given the nature of the
Cobb-Douglas function, using inputs into production (capital, labour and raw materials), it was
decided not to use any “down-stream” data wherever possible1. More specifically, to quantify
labour input, the number of hours worked were used, rather than employment. Capital input
was measured using fixed capital, i.e. assets, instead of (short-term) investment. It was assumed
that assets depend on discounted investment, which will be important in the forecasting part.

Starting from the analysis of the Base Metals sector as described in section 5.1.1, different setups
using different raw materials were tested. Beginning with a set consisting of all potential raw
materials, input variables were reduced step by step if they were either statistically insignificant,
or the interpretation of their coefficient was not in line with expectation and could not be
explained after a more in-depth analysis.

1 i.e. energy consumption should not be a function of factors such as production or demand, but of real inputs
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Model results

It was found that the model setup using scrap consumption as a raw material, assets for capital,
and hours worked for labour provides highly significant results and a very good model fit,
as figure 5.1.2 shows. Further, a time dummy was included, and the intercept excluded for
statistical insignificance.

Figure 5.1.2.: Modelling results for German Base Metals sector, author’s own work

Note here that R2 and adjusted R2 are not representative when no intercept is included in the
model. It should therefore be mentioned that including the constant yields an adjusted R2 of
0.818, while the constant is statistically insignificant (p-value of 0.479).

These results are interesting for several reasons. First, the statistical assessment of the model
(p-values, F-statistic, LLV) suggests that, to a very large extend, variance in the consumption of
power can be explained by the variance in the independent variables used in the model. Or, in
other words, the model performance is remarkable.

Second, as one would expect, working hours and the consumption of the electricity-consuming
raw material scrap have a positive coefficient, meaning that an increase in the use of either one
yields an increase in electricity consumption.

Third, the negative coefficient for assets suggests (maybe unexpectedly) a decrease of electricity
consumption associated with an increase in the use of capital. However, scientific literature
provides an explanation: Schumacher and Sands 2007 in their analysis on the German steel
sector found that steel production in EAFs is about 70% less capital-intensive than conventional
BOFs (US-$ 11.92 vs US-$ 38.75 per tonne of crude steel). Therefore, a ceteris paribus decrease
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in the use of capital (i.e. decreased assets) suggests a replacement of BOFs by EAFs. As EAFs are
more electricity-intensive (+129% according to Schumacher and Sands 2007), this replacement
yields increased electricity consumption, hence the negative coefficient for assets. We will see
that this pattern is stable for countries with relatively high shares of EAF production. Germany
has increased its share of EAF production in total crude steel production from 20.3% in 1991 to
30.0% in 2017 (Worldsteel 2018). At the same time, steel production increased slightly from
42.2 Mt to 43.3 Mt. It is therefore fair to say that Germany, independently from its total steel
production, is shifting its production from carbon-intensive OBFs to electricity-intensive EAF
production.

Fourth, there seems to be a significant underlying electrification pattern in the German metals
industry, indicated by the positive coefficient of the time dummy. It suggests linearly increasing
electricity demand over time that is not otherwise reflected in the model (e.g. not by the
consumption of steel scrap).

Finally, we note that the Cobb-Douglas production function seems to provide a very good
approach when modelling electricity consumption. In the following sections and chapters, it
will be applied to further countries and sectors. However, future analysis might focus on using
this modelling approach not only for electricity, but for other energy sources as well.

5.1.3. Other country models

In order to avoid repeated explanations, in the following the country models as well as forecast-
ing results for the other four countries will be jointly presented and interpreted. The p-values
of model coefficients for the Base Metals and other sectors are presented in section A.2 of the
appendix.

France

France has historically been relying on the use of EAFs more than Germany did. According
to figures from Worldsteel 2020, French steel production in EAFs was 28.4% of total French
steel production, peaking during the 2000’s in more than 40% of production and then slowly
declining back to 31.2% in 2017.

However, French use of scrap steel is somewhat decoupled from steel production: The ratio of
scrap consumption to total steel production between 1991 and 2017 has fluctuated between
0.46 in 2017 and 0.7 in 2009. To put this into context, in the same period the ratio in Germany
remained in the range of 0.44 to 0.5.

This is reflected in the statistical parameters of the model: While there are model setups that
assign statistical significance to scrap consumption (e.g. combining with assets and no constant
and time dummy), best model performance (as measured by the LLV) is reached when, instead
of steel scrap, iron ore consumption is included in the model. An overview of model results
and parameters can be taken from table 5.1.3.
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Independent variable Germany France Belgium Netherlands Austria

Assets -0.94 -0.56 -0.32 0.89 -
Hours worked 0.69 0.35 - - -0.74
Scrap 0.10 - 0.31 - -
Iron ore - 0.22 - - -
Non-ferrous ores - - - 0.60 -
Bauxite - 0.26 - - 0.16
Lead - - - - 0.14
Time dummy 0.06 - -0.09 - 0.16
Intercept - - - -11.89 -

LLV-value 61.81 34.89 39.00 17.07 29.25

Adjusted R2 n.a. n.a. n.a. 0.80 n.a.

Table 5.1.3.: Overview of model coefficients for Base Metals sector by country, author’s own
work

To add further detail to the overall picture, the consumption of bauxite has been added as
another raw material indicator. Bauxite, an aluminium ore, is the most important raw material
used in the production of aluminium (Rathe and Torgersen 2020). Primary aluminium is
produced in an electrolytic reduction process. Europe’s largest aluminium plant in Dunkerque,
France, consumes as much as 4 TWh of electricity per year, with a total production of 284,000
tonnes of aluminium in 2017, accounting for 45% of electricity consumption for non-ferrous
metals in France2. Note that the production of secondary aluminium from scrap material is
significantly less electricity-intense, consuming approximately 5% of the electricity used for
primary aluminium, according to ibid.

The interpretation of model results persists when compared to the results of the German model:
An increase in assets has an adverse impact on electricity consumption. For all other input
variables, an increase in inputs yields higher power demand, as explained for the case of the
German metals sector. Additionally, the consumption of bauxite is driving electricity demand
as well.

It remains interesting to observe that iron ore, in this case, seems to be the better indicator.
This is surprising, given that steel scrap was assumed to be the more “direct” indicator of EAF
production. Given the decoupling of scrap consumption and steel production as explained
above, and the fact that iron ore is used in EAF production as well, the interpretation of results
however remains unchanged.

2 This compares to 66% of primary aluminium production in France by this plant, according to production data
by BGS 2020
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Belgium

For Belgium, the model coefficients suggest a similar impact of changes on electricity con-
sumption for assets and scrap consumption, as was expected after analysis of the German
metals sector. The time dummy in this case has a negative sign, suggesting that efficiency gains
outweigh electrification.

Netherlands

Electricity consumption in the Dutch Base Metals sector is decoupled from scrap consumption.
In fact, the share of EAF production in total steel production in the Netherlands has decreased
from a low contribution (4.3%) in 1990 to zero in 2017. Therefore, once again non-ferrous ores
will serve as indication for raw material input.

Note that working hours are statistically not significant. Further, a constant is used in the
model, and the time dummy excluded, both in order to ensure significance of input variables
and improve model performance3.

Again, the consumption of raw materials drives electricity consumption as anticipated. Differing
from countries in which EAF production was historically significant, increasing capital input
leads to an increase in electricity consumption as well. Consequently, the Netherlands consumed
only 0.4 Mtoe of electricity in the Base Metals sector in 2017 - only Austria consumed less
energy from electricity (0.3 Mtoe) (Enerdata 2020), while producing negligible shares of steel
from EAFs.

Austria

The Austrian metals industry differs from the German one, as crude steel is mostly produced
in OBFs, with the share of EAF production fluctuating around 9% since the 1990’s and reaching
a mere 10% in 2017. The focus of this analysis is therefore turned to the non-ferrous metals
sector. Eurostat 2020 provides detailed data on the consumption of ores in Austria (ferrous as
well as non-ferrous ores, the latter being at the focus of this analysis of the Austrian case). In
terms of material consumption, lead and bauxite (i.e. aluminium ores) were historically the
two most used materials, which is why they were included in the model.

Note that the p-value of aluminium consumption suggests statistical insignificance, as the 0.05-
threshold is not met. However, after consideration, it was decided to include the consumption
of bauxite in the model setup, as its consumption has increased lately. On the other hand, lead
consumption has dropped by 94% since 1990. Excluding aluminium from the model would
therefore effectively result in no raw material being part of the forecasting model. Given
the closeness of the p-value to the claimed threshold, it was therefore decided to keep the
consumption of bauxite in the model4.

3 Unlike in the Base Metals models for other countries, thanks to the inclusion of an intercept, measuring model
performance in this case is facilitated by the fact that the R2 and adjusted R2 values can be used as indicators.

4 One might find that regression modelling is indeed an art, as Hauer 2015 suggests in his book “The Art of
Regression Modelling in Road Safety”. Indeed, setting up a regression model sometimes requires more than
pure statistical significance, as this analysis is aiming to explain.
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Once again, for both raw materials a positive coefficient is found by the model, indicating that
increased consumption yields increased electricity demand. Different from the German model,
a change in hours worked has an adverse effect on power consumption. One explanation
for this could be automation of work, with workers being replaced by electricity-powered
machines.

5.1.4. Conclusions on the Base Metals sector

The modelling suggests several major conclusions:

1. Especially for the more important countries in terms of electricity consumption, power
demand from EAFs largely determines overall demand. The consumption of steel scrap
is therefore the most important indication of power demand.

2. Assets play an ambivalent role: For countries with a high share of EAF production,
a decrease in assets yields increased electricity consumption, as EAFs are less capital-
intensive than OBFs. For other countries, this effect is reversed, and assets drive electricity
demand.

3. The inverse effect is true for hours worked, which have a positive coefficient for EAF-
intense countries (Germany, France), and a negative one for Austria.

It also becomes evident that the interpretation of some variables is not straight forward. The
time dummy for some models in-, and for others decreases electricity demand, all the while
being statistically significant. Further, it should be noted that all forecasts are subject to
uncertainty given the fact that they are based on assumptions on the development of input
variables. Finally, disruptive changes in the industrial production remain difficult to model, e.g.
the introduction of new technologies impacting electricity demand, such as hydrogen steel5.
The trend towards electrification is another element that is difficult to predict, and chapter 7
will therefore introduce different pathways for future production from EAFs.

5 Thyssenkrupp tested a new technology using hydrogen to replace coal in OBFs in 2019 (Wettengel 2019). The
technology is supposed to decrease carbon emissions. However, production of hydrogen is highly electricity-
intensive, as the chapter on the Chemicals sector will show. It will therefore be crucial to see how renewable
energy is integrated into the energy landscape of the future: One option could be using excess renewable
generation to produce hydrogen, which would favour a switch towards hydrogen steel making.
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5.2. Chemicals

5.2.1. Sector introduction

The chemicals sector from the energy point of view is the single most important electricity
consumer in all five countries analysed in this study. Summing over all countries, the Chemicals
sector accounts for 23.9% of total industrial electricity consumption from 1991 to 2017 (the
Base Metals sector follows with 19.2%). According to Moulijn, Makkee, and Diepen 2013, p.14,
the Chemicals industry is mainly based on 10 different raw materials, 10 different types of
fuels, producing 20 base chemicals, 300 intermediate products and a total of about 30,000 final
products. When going further into detail, one may observe that, out of the 20 base chemicals,
one emerges as the main driver for electricity consumption, namely chlorine.

Chlorine production

Chlorine is produced in an electrolysis process which, as the name suggests, uses electricity to
produce chlorine (Cl), caustic soda (NaOH) and hydrogen (H) from salt brine (aqueous solution
of NaCl) according to the chemical reaction described in formula 5.1.

2#0�; + 2�2$ −→ 2#0$� +�;2 + �2 (5.1)

This chemical reaction produces outputs at a fixed ratio of 1.1 tonnes of caustic soda and 0.03
tonnes of hydrogen per tonne of chlorine produced. This output is called one Electro-Chemical
Unit (ECU). On average, the production of one ECU consumes 3.3 MWh of electricity. (Eurochlor
2010)

In 2017, the chlor-alkali electrolysis process in Germany consumed as much as 9.6 TWh of
electricity, which equals 18.7% of total electricity consumption in the Chemicals sector (VCI
2020). Further, as chlorine is a base chemical, used for 55% of chemicals production in Europe
(Eurochlor 2010), production of chlorine drives overall industrial activity in the Chemicals
sector.

Unfortunately, unlike the Base Metals industry, it is more difficult, and sometimes impossible
to find data on the consumption of raw materials (e.g. NaCl, also known as "kitchen salt") in
the industry. Eurostat provides statistics on the consumption of NaCl, but these are biased by
different uses of NaCl, in the food industry, but also on streets to prevent icing in the winter –
effects which are difficult to quantify.

However, given the fixed in- to output ratio of the above process (approximately 1.6 tonnes of
pure NaCl per ECU), the input of raw materials can be deduced from the amount of output
produced. Or, in other words, chlorine production can be used as a direct measure of raw
material consumption, and therefore raw material (NaCl) consumption is equivalent to chlorine
production.
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The following analysis will therefore focus on the production of chlorine as main indicator for
electricity consumption. For Germany, these production figures (for chlorine and a multitude
of other chemicals) are made available by the Verband der Chemischen Industrie (VCI), the
German national chemical industry association. On the international level, the European
association of chlor-alkali plant operators, Eurochlor, publishes figures on the production of
chlorine. Given international economic competition regulation, the figures are very often
published on an aggregate base for several countries. It will therefore be crucial to make valid
assumptions on the split of chlorine production between the different countries, which will be
explained in more detail in the country-specific sections.

Hydrogen production

As shown in the previous section, hydrogen is a by-product of chlorine production. However,
hydrogen is not only produced in the chlor-alkali electrolysis, but also in different other
processes, all of which are highly energy-intensive, and some of which use electricity to
produce hydrogen (e.g. water electrolysis and potentially methane pyrolysis).

The production of hydrogen will keep on gaining importance in the future, as a part of future
energy systems with high renewable energy generation. In times of excess generation, electricity
could be used to produce hydrogen. Hydrogen, in turn, can be used to produce methane,
chemicals, or other fuels, or can directly be used to produce energy in fuel cells. These
processes can be summarised as “Power-to-X” (VCI 2020).

Finally, hydrogen is used to produce more chemicals along the chemical value chain, not the
least of which is ammonia, which is used in agriculture to grow food and is one of the most
important chemicals in terms of production quantities.

Given the current significance of hydrogen as direct power consumer, indicator for overall
industrial activity, and the fact that hydrogen production is expected to further increase its
significance in the future, it will be included in the model setup if possible. Due to the different
production processes of hydrogen, deduction of the consumption of raw materials is not as
evident as for chlorine. While water electrolysis requires water as an input, methane pyrolysis
requires methane, the main constituent of natural gas. Therefore, including the production of
hydrogen in the model differs from the approach chosen in the Base Metals model. However, it
will be shown that this does not change the general conclusions that can be drawn from the
results.

5.2.2. Country models

Germany

Using the equivalent indicators as before – assets for capital, hours worked for labour, hydrogen
and chlorine as “raw material equivalents” – a model was implemented. As shown in table
5.2.1, model performance for Germany is remarkable.
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Independent variable Germany France Belgium Netherlands Austria

Assets 0.67 -0.50 0.19 - 0.25
Hours worked 0.30 - - 0.08 -0.55
Chlorine 0.15 0.24 0.19 0.58 0.51
Hydrogen 0.11 - - - -
Nitrogen - 0.11 - - -
Time dummy - - - - 0.07
Intercept -11.07 - -1.65 - -

LLV 67.10 44.00 42.61 53.55 42.99

R2_adj 0.89 n.a. 0.46 n.a. n.a.

Table 5.2.1.: Overview of model coefficients for Chemicals sector by country, author’s own
work

Note that, in this model, a constant was included, as it proved to be statistically significant.
On the other hand, the time dummy was found to be statistically insignificant and therefore
excluded. Including the constant yields an unbiased R2 value, which indicates an excellent
model fit, with all variables being statistically significant.

Generally, the model performance is remarkable. It seems that the variables chosen for the
analysis indeed do drive electricity demand to a large extent, while at the same time giving an
indication for overall industrial activity and thus electricity consumption in the following steps
of the chemical value chain. For all independent variables, the positive coefficients indicate
a positive sensitivity: Electricity consumption increases when either one of the variables is
increased.

It is also worth noting that in the German chemical industry, both electrification and efficiency
gains do not seem to play a significant role, or are offsetting each other; either way, the time
dummy is statistically not significant.

Finally, as discussed before, including hydrogen changes the approach of a Cobb-Douglas
function using only “inputs” in the economical sense as independent variables. Therefore,
another model was set up, using only assets, hours worked and chlorine production as inputs
(as explained before, chlorine production is equivalent to the use of NaCl as raw material). The
modelling results are shown in figure 5.2.1.

The general results remain the same: All independent variables positively impact electricity
consumption; model performance is not quite as outstanding as for the hydrogen case, but
comparable on a high level.

This allows for two conclusions: Firstly, relaxing the assumption of the Cobb-Douglas function
to use only economic input factors by using hydrogen as well does not change the general
results. Secondly, the relaxation improves model performance (at least in this case).
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Figure 5.2.1.: Modelling results for German Chemicals sector without hydrogen production,
author’s own work

These observations are important with regards to the following countries. For some of them,
data on certain inputs is scarce. Therefore, in some cases, approximations had to be made,
which will be explained in the corresponding sections.

France

In order to improve model performance for France, nitrogen production was included in the
model, for four main reasons:

1. As explained before, relaxing the strict input condition of the Cobb-Douglas model
yielded improved model results and no fundamental change of results. Therefore, using
production figures was assumed to be admissible.

2. There are more producers for nitrogen in France than for chlorine, which means that
reporting of production data is possible despite competition rules. Therefore, production
figures were complete and more reliable than for chlorine.

3. The production of nitrogen is energy-intense, as nitrogen is mostly produced in the
Linde-process. In the process, air is first compressed and later liquefied, both processes
requiring electricity as inputs (Maytal 2006).
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4. Nitrogen, like chlorine, is an important basic chemical in the chemical value chain.
Applications of nitrogen are e.g. ammonia fertilizers, which are used to grow food.
Therefore, nitrogen can indicate overall activity in the chemical sector.

As was the case for Germany, chlorine production is clearly driving electricity demand in
France. It is interesting to note that, despite the evident significance of electrolysis processes
such as chlorine production, the main share of electric energy in France was used to power
electric motors (e.g. compressors, pumps, mixers, etc.). According to INSEE data, in 2018
approximately 58% of electric energy used in the chemical industry was used for these purposes.
This compares to about 18% of overall electric energy used for electrolysis.

Therefore, the negative coefficient of assets is interesting: It seems that France has managed to
translate investment in assets into efficiency gains, i.e. reduced electricity demand, as opposed
to Germany, where assets tend to drive electricity demand. (Note that more specific data on the
use of electricity for different uses within the chemicals sector was not available for Germany
or other countries.)

Like chlorine, nitrogen production appears to drive electricity demand as well, confirming the
significance of nitrogen in overall electricity demand from the chemicals industry. The effect
of working hours was statistically insignificant and therefore excluded from the model.

Belgium

As mentioned above, Eurochlor publishes European chlorine production figures. However,
from 2002 to 2013, production data from the Netherlands and Belgium has been published on
an aggregate basis, to ensure no conclusions on the production of single production sites could
be drawn from country data (EU competition rules).

Eurochlor also publishes detailed data on installed production capacities. Therefore, aggregate
production data for both countries was weighted by installed capacities for both countries,
assuming similar utilisation rates.

From 2014, Eurochlor publishes even more aggregate data, with no given split on different
European countries or country groups. For these years, the utilisation rate (published by
Eurostat as aggregate figure for all European countries) was multiplied with installed capacities
(as published by Eurochlor, see above), to approximate chlorine production levels.

For Belgium, chlorine production and assets were the most important and statistically significant
factors. Model performance as measured by the R2 value is not outstanding, but this may be
due to a relatively unsteady development of the electricity demand curve, see figure 5.2.2. The
model was unable to explain the spikes, positive and negative, of electricity consumption. It
was however able to follow the general development. The difficulty to model spikes could also
be due to the calculation methodology of chlorine production, as discussed above.

It should be noted that Belgium is a net importer of chlorine, according to UN Comtrade data.
Therefore, reliable data on the import of chlorine (and potentially other basic chemicals) could
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Figure 5.2.2.: Model fit for Belgian Chemicals sector, author’s own work, historical data based
on Odyssee Database

further improve the model. Unfortunately, UN Comtrade data for Belgium is only available
after 1999. Including chlorine production in the model and training only for the period after
1999 showed that chlorine imports did drive demand, but due to fewer observations decreased
overall model performance. It was therefore decided to stick to chlorine production and assets
as indicators. The time dummy was excluded for statistical insignificance.

As for France and Germany, chlorine production in Belgium is driving electricity demand.
Unlike France, but similar to Germany, assets have a positive coefficient as well, even though
the output elasticity is lower than for Germany. This suggests that efficiency gains through
investment in new and potentially more expensive equipment in Belgium do not outweigh the
increased use of electric motors in machines.

Hours worked were statistically insignificant, suggesting that automation effects and increased
production with increasing labour input offset in the Belgian chemicals sector.

Netherlands

For the Dutch case, chlorine production proved to be an outstanding indicator, and in combi-
nation with the number of hours worked in the industry yielded strong model performance,
as indicated by the LLV value. Please note, however, that chlorine production figures were
not readily available and therefore estimated using the methodology described in the section
on Belgium. Both constant and time dummy were not included in the model due to statistical
insignificance.
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As in all other countries, chlorine production in the Netherlands clearly drives electricity
demand. Unlike Belgium, the Netherlands changed from being a net chlorine importer to a net
exporter several times in the past, while on average tending to export. This apparently improves
model performance, such that chlorine production is a strong indicator. Like in Germany, hours
worked have a positive impact on power demand, thus being a positive production indicator.
Assets were statistically insignificant and therefore excluded from the model.

It is noteworthy that, comparing the Netherlands with Belgium, chlorine production is a
stronger driver in the Netherlands than in Belgium. One possible explanation for this effect
is the historical chlorine trade balance of both countries: With Belgium traditionally being
a net importer of chlorine, chlorine production alone might be less well suited to indicate
overall production activity along the chemical value chain. On the other hand, the Netherlands
have either exported, or imported very little chlorine, suggesting that almost all the chlorine
produced in the Netherlands is used there. Consequently, production of products made from
chlorine (and electricity consumption that goes with it), is more strongly correlated with the
production of chlorine.

Austria

The model setup for Austria once again includes all three inputs: labour (hours worked), capital
(assets) and raw material input (indirectly through chlorine production). Chlorine production
data for Austria was even more scarce than for Belgium and the Netherlands. Therefore, the
approach used for those countries after 2014 (multiplying installed capacity with EU-wide
utilisation rate) was used to estimate chlorine production levels in Austria for all years.

Note that Austria only has one chlorine production plant, which has expanded its production
capacity from 55 k tonnes per year in 2000 to 57 k tonnes per year in 2019. An estimation
such as the above is therefore prone to bias, e.g. in the case of long-term outages of the single
production site. In that case, however, it can be assumed that demand for chlorine along the
value chain would be covered by imports, more specifically imports from Europe. Therefore,
even given the above bias, utilisation rates in Europe could be indicative for Austrian power
demand along the chemical value chain.

Despite the bias as described above, the model performs very well, and all input variables are
highly significant from the statistical point of view. The LLV value indicates strong model
performance.

Chlorine production once again is the most important driver of power demand. Assets are a
strong positive indicator as well, suggesting that the increased power consumption Austria
experienced (+123% from 1991 to 2017) was at least partly due to an increase in fixed capital,
such as machines and production plants. Still, the negative coefficient of hours worked suggests
that automation of production processes does play a role in the Austrian chemicals sector.

Finally, the time dummy suggests an underlying increase of power demand, potentially through
electrification of processes. The constant was insignificant and therefore excluded from the
model.
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5.2.3. Conclusions on the Chemicals sector

The major conclusions to be drawn from the above are the following:

1. The chlor-alkali process is the single most important driver of electricity demand in
all five countries. This is due to the significance of direct power consumption in the
process on one hand. On the other hand, chlorine, which is a product from this process,
is the base chemical for a multitude of chemical products, and therefore the production
of chlorine is an indicator of overall industrial activity in the sector.

2. Production of major products in an industry can be an important indicator where data
on the consumption of raw materials is unavailable or biased by different applications of
the material. This is the case for chlorine (even though production in this case allows for
direct deduction of material use), hydrogen and nitrogen in the countries analysed above.

However, the same limits to the analysis as for the Metals sector apply here as well. It remains
difficult to predict disruptive changes taking place in a sector. Further, it should be noted
that the expected increased importance of hydrogen as a means to store energy has not been
analysed in this paper, as this has no connection with the Chemicals sector as such.
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5.3. Pulp & Paper

5.3.1. Sector introduction

The Pulp & Paper industry in Europe is another of the most electricity-intensive industries
in Europe. In the five countries at the focus of this work, the industry has contributed 10% to
overall electricity consumption since 1991 (Enerdata 2020).

The countries however differ quite significantly in terms of the relative significance of the
industry, as the following figure shows. While the Pulp & Paper industry in Austria has
contributed more than 20% to overall electricity consumption, in Belgium the share is just 7%,
as displayed in figure 5.3.1.
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Figure 5.3.1.: Contribution of Pulp & Paper to overall industrial electricity consumption by
country, 1991 - 2017, based on Enerdata 2020

The explanation for this can be found in the very different availability of raw materials and the
subsequent historical development of the industry in the specific countries. While Austria has
quite significant natural resources (i.e. wood) for Pulp & Paper production, the other countries
have historically focused on different industries. The consequences can still be observed very
clearly: While Austria in 2017 produced only 47% (Austropapier 2019) of its total paper and
cardboard output from recycled material (recycling paper), this figure amounted to 85% in the
Netherlands (VNP Netherlands 2018). Note that the EU target for recycling paper use is 74% in
2020.. A recycling share of 100% is rather unlikely, as the used fibres lose their characteristics,
the more often they are recycled.

In this context, another interesting observation is that, the higher the share of recycled paper,
the lower the contribution of biomass to overall energy consumption within the Pulp & Paper
industry in a country, as the following figure shows (Enerdata 2020, national Pulp & Paper
producer associations).

This effect is due to the availability of biomass to provide heat for the production process. While
electricity is needed especially in the process of preparing primary materials (e.g. decortication,
shredding of wood), heat is needed in particular for drying paper in the end of the production
process. The more primary materials are used in the production, the more waste products
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Figure 5.3.2.: Share of Biomass in overall energy consumption, 1991 - 2017 and share of recycling
paper in overall paper & board production, 2017 by country, author’s own work,
based on Enerdata 2020 and national paper producer associations

accumulate during the production process, which, in this case, can be used to generate heat
from biomass (Schaffrath 2020).

While pulp (primary fibres) and recycling paper (secondary fibres) serve as the main components
to produce paper from, non-fibrous materials are used to give the final product its specific
characteristics (e.g. photographic papers have other characteristics than cardboard) (ibid.).
The analysis will therefore focus on the two main raw materials pulp and recycling paper and
include raw materials wherever their contribution to electricity consumption was statistically
relevant, as for their p-value.

Data availability

CEPI, the European association of paper producers, provided detailed data on the consumption
of raw materials in the five countries. Due to competition regulation however, not all data
could be provided to a full extent. The following table gives an overview of data availability
based on CEPI data (CEPI 2020).

For the Netherlands, the national association of paper producers VNP publishes historical
annual consumption data. For Belgium, missing data for recycling paper was provided by the
national association COBELPA. However, data on the consumption of wood pulp was still
unavailable. The approach to mitigate this gap will be discussed in the country model.
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Consumption of... Germany France Belgium Netherlands Austria

Paper for Recycling CEPI CEPI Nat. ass. CEPI CEPI
Wood Pulp CEPI CEPI - Nat. ass. CEPI
Non-fibrous Materials CEPI CEPI CEPI CEPI CEPI

Table 5.3.1.: Overview of data sources (CEPI or national association) for Pulp & Paper sector,
author’s own work

5.3.2. Country models

Germany

While hours worked were statistically insignificant, two other input variables (assets, consump-
tion of paper for recycling and non-fibrous materials) were statistically significant and had
positive correlation.

Note that, in this model, a constant was included, as it proved to be statistically significant.
On the other hand, the time dummy was found to be statistically insignificant and therefore
excluded. Including the constant yields an unbiased R2 value, which indicates an excellent
model fit, with all variables being statistically significant (s. table 5.3.2).

Independent variable Germany France Belgium Netherlands Austria

Assets 0.69 - 0.64 1.42 -
Hours worked - - -0.36 - -0.43
Recycling Paper 0.39 0.54 - 0.80 -
Wood pulp - 0.42 - - 0.22
Non-fibrous materials 0.50 0.50 0.19 - 0.65
Time dummy - -0.10 - - -0.08
Intercept -9.46 -11.39 - -11.26 -2.22

LLV-value 44.37 46.11 39.82 31.60 57.29

Adjusted R2 0.93 0.94 n.a. 0.89 0.89

Table 5.3.2.: Overview of model coefficients for Pulp & Paper sector by country, author’s own
work

As stated above, Germany has a rather high share of recycling paper usage in overall paper
production (74.6% in 2017, 75.9% in 2018). Therefore, the consumption of recycling paper is
a stronger indicator than the consumption of the wood pulp made from primary fibres. The
use of non-fibrous materials is assumed to be independent from the use of one or the other
source of fibre, as the kind of paper produced does not depend on input materials. However, it
is possible that the rather large coefficient for non-fibrous materials is related to the missing
wood pulp consumption, as non-fibrous materials are used with both fibre sources.
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France

The model for France includes, apart from the time dummy and the intercept, only raw materials
(recycling paper, pulp and non-fibrous materials input). There are model setups in which
assets and hours worked are statistically significant; however, it was found that best model
performance, as measured by the LLV-value, is reached in this setup, in which all raw materials
enter with a positive coefficient.

In terms of its recovered paper utilisation rate (68.6% in 2018, COPACEL 2018), France is
moving at the critical point between relying on primary vs secondary fibres. As explained
above, production from primary fibres is more electricity-intensive, therefore even with two
thirds of its paper production based on secondary fibres, wood pulp is still a statistically
significant indicator for France.

Hours worked and assets did not improve model results in the final setup. However, the
inclusion of an intercept and the time dummy yields a strong model performance, indicated by
both, the LLV-value (46.11, see table 5.3.2) and adjusted R2 (0.941).

Belgium

As discussed above, data availability for Belgium was not as good as for the other countries in
this analysis. However, given a good model performance using only hours worked, assets and
non-fibrous materials, it was decided to limit the model to these input factors.

In this context, it is important to point out that a large part of the Belgian paper production
is aimed at graphical papers (70% of total production in 2017, according to COBELPA, 2018),
which are more intensive in the consumption of non-fibrous materials than e.g. packaging
material (24% of total production). When comparing consumption of non-fibrous materials to
overall paper production, these materials make up for 18% of the weight of the paper production
in Belgium, surpassed only by Austria (20%).

It is therefore concluded that the use of non-fibrous materials in Belgium is important and
indicative for overall paper production and, eventually, electricity consumption. This conclusion
is supported by the modelling results, which suggest statistical significance of the consumption
of non-fibrous materials, in combination with assets and hours worked, as table 5.3.2 shows.

Netherlands

For the Netherlands, a rudimentary setup with assets, consumption of recovered paper and an
intercept proved to deliver good model results (adjusted R2 of 0.892). As shown in figure 5.3.2,
the Netherlands have the highest recycling paper utilisation rate among the five countries.
This explains the strong model performance even without including other raw materials.

Austria

As mentioned above, Austria, in relation to its overall paper production, consumes most non-
fibrous materials among the five countries. Further, as shown in 5.3.2, Austria has the lowest
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recycling paper utilisation rate among the five countries. It comes therefore as no surprise that
for the Austrian model, a setup that includes the consumption of non-fibrous materials and
pulp delivers best performance. Including hours worked, an intercept and a time dummy, the
adjusted R2-value is 0.888, indicating strong model performance, which is confirmed by the
LLV-value (57.29).

5.3.3. Conclusions on the Pulp & Paper sector

As table 5.3.2 shows, the results for all countries are similar: For three countries, assets have a
positive coefficient. Hours worked are insignificant for all countries but two (Belgium, Austria),
where their correlation is negative.

In the countries with highest recycling rates, recycling paper consumption was significant, and
has a positive coefficient. For Austria, producing around half of its paper from primary fibre,
consumption of pulp (i.e. primary fibres) is statistically significant (while recycling paper is
not). When the intercept was significant, it was negative (all countries except for Belgium).
The Austrian model was further improved by a time dummy (negative).

This allows for several conclusions: Given the positive impact of assets, and negative coefficients
of hours worked, it seems that workers have been replaced by machines in all countries, thus
using more electricity for those machines.

Further, it seems that the higher the recycling share of countries, the more likely is recycling
paper to drive demand. Note that the break point is not at 50%: As primary fibres are more
electricity-intensive to turn into pulp and paper, even if more than half of the paper was
produced from recycled paper, wood pulp is still a significant driver (e.g. France).

The main conclusions to be drawn from the above analysis of the Pulp & Paper sectors in the
five countries are as follows:

1. Depending on the specific conditions in a country, its paper production landscape differs.
Countries such as Austria, having rich natural resources for the production of pulp and
paper, still rely strongly on the production from primary fibres. On the other hand,
countries like the Netherlands produce mainly from recovered paper. The modelling
results show that this is reflected in the statistical significance of certain input parameters.

2. There is strong evidence that labour is replaced by machines, as for all countries in which
hours worked were significant, the coefficient is negative. For assets, the opposite effect
is true.
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5.4. Non-metallic Minerals

5.4.1. Sector introduction

Sector structure

The Non-metallic Minerals industry can be divided into different sub-sectors according to the
products manufactured, as table 5.4.1 shows.

PRODCOM classification Product group

23.1 Glass & glass products
23.2 Refractory products
23.3 Clay building materials
23.4 Other porcelain & ceramic products
23.5 Cement, lime & plaster
23.6 Articles of concrete, cement & plaster
23.7 Cut, shaped & finished stone
23.9 Other non-metallic mineral products

Table 5.4.1.: Classification of non-metallic minerals products according to PRODCOM classifi-
cation (Eurostat 2019)

The different sub-sectors are not equally important in the different countries: As table 5.4.2
shows, the Netherlands produce almost exclusively articles made of cement, lime & plaster
(PRODCOM 23.6), which is the focus of most of the countries. The German landscape on
the other hand is the most diversified, with glass (23.1), cement, lime & plaster (23.5), articles
thereof (23.6) and other non-metallic minerals products (23.9) all contributing significantly
to overall production quantities. Note that quantities here refer to weight (i.e. tonnes), not
contribution to GDP or power consumption.

Country 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.9

Austria 0.01% 0.72% 0.11% 0.00% 11.48% 75.69% 0.51% 11.49%
Belgium 0.40% 0.07% 0.00% 0.01% 18.70% 73.71% 0.27% 6.84%
France 6.99% 0.15% 0.45% 0.02% 11.76% 62.25% 0.26% 18.12%
Germany 15.88% 0.66% 0.63% 0.20% 39.83% 18.78% 1.23% 22.78%
Netherlands 0.21% 0.16% 0.00% 0.00% 0.00% 99.35% 0.27% 0.00%

Table 5.4.2.: Overview of relative product share in overall production weights by country,
non-metallic minerals products, 2018 data, author’s own work, based on Eurostat
2020
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While the production of cement, lime & plaster and articles thereof is more significant in terms
of production quantities in most countries, glass production is more electricity-intensive than
the production of cement: On average, producing a tonne of glass consumed 2.1 GJ (583 kWh)
of electricity per tonne of glass produced (differing by the type of glass produced - lowest for
hollow glass, highest for special glass, according to Fleiter, Schlomann, and Eichhammer 2013).
At the same time, producing cement from clinker consumes approximately 0.4 GJ (110 kWh) of
electricity per tonne. This specific power consumption has increased since falling to a low of
99.0 kWh in 2008, mainly due to increased electrification of processes and more demanding
specifications for product quality (VDZ 2019). The electricity demand of the subsequent
production of concrete and similar products is more difficult to specify. MPA 2018 indicates
that the total electricity consumption in the production process ranges between 120 and 180
kWh per tonne of concrete, depending on product characteristics.

Unfortunately, there is no reliable historic data on the split of electricity consumption between
the different sub-sectors, and thus no split by products. However, given the information about
electricity-intensity above, a focus for the specific countries can be defined: For Germany, the
analysis will focus on both the production of glass (PRODCOM 23.1) and cement, lime & plaster
(23.5). The models for France, Austria and Belgium focus on the production of cement, lime &
plaster and articles thereof. In the Netherlands, despite the relatively low electricity-intensity
of the production of articles from cement & lime, the focus will be on these products, as no
other products were produced with a significant market share.6

Rawmaterials

As discussed above, the analysis will focus on three different sub-sectors: Manufacture of glass
(23.1), cement, lime & plaster (23.5) and articles thereof (23.6). Even though the sectors differ
quite significantly in their electricity-intensity and outputs, they do share some raw materials,
as figure 5.4.1 shows.

Both the production of glass and cement use limestone as important raw material. In 2018, the
German cement industry consumed a total of 38.6 mio tonnes of limestone, and 7.7 mio tonnes
of granulated blast furnace slag, a byproduct of iron production - the two most important
inputs in the production of 24.5 mio tonnes of clinker and 33.7 mio tonnes of cement. Eurostat
only reports direct figures for limestone consumption. Slag consumption is included in the
circular economy reporting of non-metallic minerals (MF3), as is glass waste and most mineral
waste from construction and demolition (Eurostat 2018).

In 2018, 38% of total glass products manufactured in Germany were flat glass products, followed
by hollow glass (19%) and container glass (18%) (BV Glas 2019). According to Leisin 2019, the
production of flat glass is the second most electricity-intensive type of glass, requiring 3.3 GJ
(917 kWh) of electricity per tonne of glass produced. Only the production of special glass has
higher specific electricity needs (5.0 GJ / 1,390 kWh per tonne). Given a market share of only
5.8%, this type of glass is not a main driver of electricity consumption.

6 Other non-metallic mineral products combined in 23.9 are too diverse to be specifically analysed in this work.
The category contains, among others, abrasive products, millstones and articles made from asphalt.
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Figure 5.4.1.: Overview of material inputs for selected sub-sectors of the Non-metallic Minerals
sector, simplified, author’s own work, based on Schaeffer and Langfeld 2014,
Fleiter, Schlomann, and Eichhammer 2013

With regards to raw materials, the different glass products differ notably in their share of
recycling glass. The potential of recycling shares depends mainly on the requirement of pure
raw materials. While container glass in Germany uses between 65 and 90% of recycled glass
(cullet), green glass reaches recycling shares of 95% of the weight and white glass ranges
between 50 and 70%. Flat glass uses only around 20% cullet, which is driving its energy
consumption: Using recycled glass reduces the energy consumption by approximately 3% per
10% of production weight from recycled glass. (Leisin 2019)

5.4.2. Country models

As per table 5.4.3, the individual countries’ results correspond very well with the countries’
industrial focus in the Non-metallic Minerals sector.
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Limestone is used in both the production of glass and cement, as figure 5.4.1 shows. Given
the industrial structure in Germany (see 5.4.1), it seems therefore intuitive that limestone
consumption plays an important role in overall electricity consumption. Likewise, it was
shown that using recycled glass instead of primary materials decreases electricity consumption,
which is reflected in the model results as well. Note that the figure for recycling of glass here
refers to packaging glass waste, not the entirety of recycled glass in Germany. It unfortunately
is the only figure that is officially reported.

As Table 5.4.2 shows, the focus in all other countries is on the production of articles from
concrete, cement & plaster. As per figure 5.4.1, sand & gravel are among the most important
inputs in this sub-sector. Unfortunately, Eurostat reporting on production data for cement is
insufficient, probably due to competition rules. Therefore, sand & gravel in this case are the
more reliable indicator, which is reflected in the model results. Consumption of sand & gravel
is statistically significant for France, Belgium and the Netherlands.7

For Austria, the case is a little different: The country is the world leader in the use of alternative
raw materials in the cement and concrete industry, having used 14% of alternative resources in
cement production in 2018, which compares to just 3.6% for the EU-28 countries (VOZ 2019).
Further, the database for Austria is more extensive than for the other countries. Therefore, data
from Global Cement and Concrete Association 2020 (GCCA) were included in the model setup,
to better reflect the use of alternative materials in cement and concrete production. As the
results show, consumption of limestone, gypsum (used in cement production) and substitutes
(for cement in the production of concrete were statistically significant and therefore included
in the model results. Note that given an insignificant share of glass production in Austria,
limestone consumption as an independent variable remained unbiased.

5.4.3. Conclusions on the Non-metallic Minerals sector

According to the individual structure of the Non-metallic Minerals industries in the five coun-
tries, different drivers for electricity demand were identified. In Germany, glass production is an
important driver of electricity consumption, with recycling glass that is used in the production
reducing overall demand. In the other countries, the focus was on the production of cement
and articles from cement, lime & plaster, with sand & gravel serving as the most important
indicators. Austria, leading consumer of alternative raw materials in cement production, can be
modelled using data on these substitutes. The model results thus reflect the relative importance
of the different products manufactured in the industry.

7 Limestone consumption was not conclusive, as especially France produces non-negligible amounts of glass,
using limestone and thus biasing the factor.

8 Note here that Eurostat reports only the combined consumption of limestone and gypsum (of which limestone
is the by far more important one). For all countries except Austria, the limestone figure therefore includes both,
limestone and gypsum. For Austria, Global Cement and Concrete Association (GCCA) reports data for the
consumption of limestone and gypsum seperately, which is reflected in the gypsum consumption below.
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Independent variable Germany France Belgium Netherlands Austria

Assets - -0.86 0.29 0.57 1.59
Hours worked 0.29 - -0.58 - -
Limestone8 0.58 - - - 0.43
Recycled glass -0.56 - - - -
Sand & gravel - 0.56 0.30 0.29 -
Gypsum - - - - 0.10
Substitutes - - - - 0.04
Time dummy - 0.08 - - -
Intercept - - -4.47 -9.91 -20.78

LLV-value 48.26 34.51 41.91 35.89 34.99

Adjusted R2 n.a. n.a. 0.78 0.81 0.74

Table 5.4.3.: Overview of model coefficients for Non-metallic Minerals sector by country, au-
thor’s own work

5.5. Summarised results

The sensitivities provided by the model allow for a detailed assessment of the influence of
individual variables on overall electricity consumption. As explained in section 4.1.1, the coeffi-
cients of the model indicate by what percentage electricity consumption changes for a 1% in-
or decrease of the input variable. Consequently, the absolute change in electricity consumption
can be evaluated by multiplication of the coefficient with total electricity consumption in a
specific sector and country.9

When performing this calculation for all sectors and countries, and summing up the effects
by variable, one can evaluate which of the factors used has the highest impact. Figure 5.5.1
displays the summed up absolute effect for all input variables. As the figure shows, assets in
the Primary Metals sector have, by far, the highest influence. In general, hours worked and
assets seem to be the most influential factors, followed by chlorine production in the Chemicals
sector.

When summing up the absolute impact of the individual variables by sector, one can understand
how strongly a specific sector could be driving electricity demand. Figure 5.5.2 shows the
impact of a hypothetical 100% change in all input variables within a sector10. It becomes

9 For example, assets in the German Primary Metals sector have a coefficient of -0.939. Multiplying this with the
electricity demand in the German Primary Metals sector of 3.68 Mtoe in 2017, the theoretical effect of a 100%
increase in assets ceteris paribus would be a decrease of -3.46 Mtoe in electricity consumption. Of course, this is
a hypothetical calculation, but it still allows for an assessment of the relative importance of individual variables.

10 Note that the absolute effect, which is used here, refers to a 100% change in the "demand-driving" direction, i.e.
for variables with a negative coefficient a -100% decrease instead of an increase. E.g., in order for this effect to
materialise, the Primary Metals sector would have to decrease its assets by -100%, which again shows that the
calculation is a hypothetical one.
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Figure 5.5.1.: Effect on total electricity consumption for +100% change of input variable for all
countries, author’s own work

apparent that, despite the Chemicals sector being the largest electricity consumer among the
four industries, the Primary Metals industry is indeed the one with the potentially stronger
levy.

The above analysis will serve as the basis for the scenarios introduced in chapter 7. The
scenario modelling will focus on the input factors with the highest impact on overall electricity
consumption. Nonetheless, to ensure consistency within the scenarios, all factors will be varied,
according to the methodology presented.
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Figure 5.5.2.: Effect on total electricity consumption for +100% change of all input variables for
all countries by sector, author’s own work
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6.1. Base Metals

6.1.1. Assumptions

Forecasts are implemented using the model coefficients found above, making assumptions on
the development of the independent variables included in the model. For all developments,
external sources were used if reliable sources were available. The following assumptions were
made in order to achieve a consistent demand forecast:

• Assets: Assets are assumed to be the discounted invest over the total life time of assets:
Oxford Economics data on investment in the industry is discounted over an assumed
depreciation period of 10 years (typical for the steel and other industries, s. BMF 2020),
using a discount rate of 10% (as used e.g. by Keys, Van Hout, and Daniëls 2019). The
yearly in- or decrease in assets calculated this way is scaled and applied to the assets
data used in the modelling part.

• Hours worked: Using data on population (Eurostat 2020), employees and hours worked
(both Destatis 2020), two figures are calculated: The share of total population working in
the Base Metals industry, and the number of hours worked per employee (both country-
specific). Both figures are assumed to develop with a logarithmic trend over time. These
developments are then used as the base to calculate future working hours: The number
of employees as the result of multiplying the (assumed) share of total population working
in the industry with the population forecast (Eurostat 2020 base case), and the number
of hours worked as the result of multiplying the assumed hours per employee and the
number of employees.

• Scrap consumption: According to Wortler et al. 2013, EU steel scrap consumption can
be assumed to grow by 0.9% annually through 2050. This value is assumed to apply for
all countries equally.

• Consumption of metal ores: It was assumed that the consumption of non-ferrous
ores will develop according to the logarithmic trend of the historically observed trend.
There unfortunately is no reliable forecast available with regards to future consumption
of metal ores. Fitting the historical data to a logarithmic curve produces R2 values of
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between 0.84 and 0.94, indicating a very good fit, which is why the assumption appears
valid in the absence of disruptive events.

Figure 6.1.1 displays assumed developments of the input variables at the example of the German
Base Metals model. Table A.3.1 in the Appendix gives an overview of assumptions on the
development of input variables for all sectors.
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Figure 6.1.1.: Development of independent variables: Historical development and assumed
evolution after 2017, German Base Metals sector, author’s own work

6.1.2. Results

Applying the coefficients determined by the regression model, as well as the time dummy yields
an increased electricity demand by the German Base Metals sector of +19% (+0.7 Mtoe/a or +8.1
TWh/a). This is the equivalent of a moderate increase of 0.5% per year. This increase is mainly
driven by a decrease in assets, suggesting that German steel production switches from OBF to
EAF production in the assessed time frame. Figure 6.1.2 displays the forecast development of
electricity consumption.

Note that the drop of electricity consumption in 2019 is caused by the inclusion of reported
values for working hours in 2019, which dropped by 4%, according to official figures.

Combining the effects of all five countries in this analysis, the modelling suggests a moderate
decrease of -4% in electricity consumption by the Base Metals sector by 2050. This is the
equivalent of a decrease of -0.24 Mtoe. The CAGR equals -0.1%. As suggested by figure 6.1.3,
the decrease is realised mostly before 2030, with electricity demand forecast to increase again
after 2040.
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Figure 6.1.2.: Forecasting results for electricity consumption, German Base Metals sector
through 2050, author’s own work
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Figure 6.1.3.: Forecasting results for electricity consumption Base Metals sectors through 2050
in the five countries and total, author’s own work

Figure 6.1.4 depicts annual electricity demand by the Base Metals sector for the milestones 1991,
2017 (last year of historical data), 2030, 2040 and 2050. What the results also suggest is that
Germany not only increases its consumption; it also manifests its position as the biggest power
consumer among the five countries. While Germany accounted for 55% of demand in 2017,
this share increases to 68% in 2050. France experiences the opposite trend. With a share of 26%
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on the second rank, the share drops to 16%. Belgium, placed third with 8% in 2017, slightly
increases its share to 9%. Austria (5% in 2017, 4% in 2050) and the Netherlands (dropping from
6% to 3%) are the only countries to switch positions.
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Figure 6.1.4.: Forecasting results for electricity consumption Base Metals sectors through 2050
in the five countries and total for milestone years, author’s own work

Table 6.1.1 displays the absolute impact by the different input variables on overall electricity
demand through 2050. What becomes apparent with this figure is that, even though scrap
consumption has a positive impact on electricity demand, in the sum of all countries, assets are
dominating the mix: As assets tend to decrease, and are negatively correlated with electricity
demand, as shown before, electricity consumption is driven by this trend. Hours worked on
the other hand have a strong negative effect.

Indicator Change 2017 - 2050 [Mtoe]

Assets 0.40
Scrap consumption 0.17
Time dummy 0.05
Consumption of non-ferrous ores1 -0.27
Consumption of iron ore -0.33
Hours worked -0.36

Total -0.24

Table 6.1.1.: Absolute impact of changes in input variables on total electricity consumption in
the Base Metals sector, 2017 vs. 2050, deviations from total are due to rounding
errors, author’s own work
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6.2. Chemicals

6.2.1. Assumptions

Applying the same methodology as before, demand forecasts were implemented. The only
change in assumptions was made for raw materials. The European Chemical Industry Council
(CEFIC) in 2013 published a study on expected developments in the European chemical industry
until 2050 (CEFIC 2013). In four scenarios, it developed different pathways towards a future
chemical landscape in Europe. The scenarios differ from each other primarily in the ambition
of Europe and its international partners with regards to climate change.

For this analysis, the “Isolated Europe” scenario was chosen to represent the future pathway, as
it currently appears that the EU in its climate ambitions is going to aim for climate neutrality
by 2050. Other industrialised countries, especially the US, are more hesitant to implement
measures to reach net-zero emissions. The scenario suggests a CAGR of 0.7% to 2030, and 0.1%
thereafter, which was implemented for all countries.

Assumptions for all other inputs (i.e. assets, hours worked and hydrogen production) do not
deviate from the assumptions made for the Base Metals sector. In particular, the production of
hydrogen is assumed to develop with a logarithmic trend, rather than according to different
studies describing the potential development paths for hydrogen in Europe (e.g. Fraunhofer,
2019). The studies forecasting significant increases in hydrogen production expect hydrogen to
play a vital role as energy storage medium in future energy systems. This, however, has no
relation with the Chemicals sector (hydrogen is not produced in the chemical industry, but
rather by storage operators). Details on the assumptions made can be found in table A.3.1 in
the annex.

6.2.2. Results

The model results suggest an overall increase of electricity consumption in the chemicals sector
of 0.24% per year, driven primarily by the increase in Germany, as displayed by figure 6.2.1.
This compares to an average annual increase of 0.35% since 1991. Absolute demand increases
by 8% from 9.08 to 9.84 Mtoe in 2050.

The larger part of the increase is realised by 2030 already, once again due to a slower increase
in Germany (s. figure 6.2.2).

The German chemicals sector increases its electricity consumption from 4.66 Mtoe per year by
22% to 5.59 Mtoe annually, an increase of 0.55% year on year. This increase is mostly driven by
an increase in fixed capital, as calculated based on investment data from Oxford Economics.

1 Includes consumption of bauxite and lead
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Figure 6.2.1.: Forecasting results for electricity consumption Chemicals sectors through 2050
in the five countries and total, author’s own work
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Figure 6.2.2.: Forecasting results for electricity consumption Chemicals sectors through 2050
in the five countries and total for milestone years, author’s own work

The number of hours worked is expected to decrease, consequently slowing down the increase
in electricity demand.

Electricity consumption in the French chemicals sector is expected to decrease by -14% until
2050, according to model results, equalling a drop of -0.45% per year. This compares to an
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average annual decrease of -1.2% realised in the period from 1991 to 2017. The change is mainly
driven by the assumed increased efficiency, indicated by the negative output elasticity of assets.
Increased production of chlorine and nitrogen soften the overall effect.

Belgium is expected to experience hardly any significant change in electricity consumption.
Both, increased chlorine production and an increase in fixed capital tend to drive electricity
demand, while hours worked decrease demand. The overall effect is yields a -4% decrease by
2050, or -0.14% per year.

The Netherlands are expected to decrease their electricity demand in the chemicals sector by
-2%, as Belgium is expecting a -4% decrease. Whilst Belgium has experienced stronger growth
in the past (+40% from 1991 to 2017, NL +20%), Dutch demand is expected to be more stable in
the period from 2017 to 2050.

Austria is expected to continue the development observed in the last 25 years, increasing
electricity consumption. By 2050, demand in the chemicals sector increases by 35% (0.91%
annually), which compares to an increase of about 3.13% from 1991 to 2017. The strongest
driver of demand increase, yet again, is increased production of chlorine. However, in the
Austrian case, all input factors (assets, hours worked, chlorine production, time dummy) have
an increasing effect on electricity consumption in the chemicals sector.

Indicator Change 2017 - 2050 [Mtoe]

Assets 0.73
Hydrogen production 0.39
Chlorine production 0.00
Nitrogen production 0.01
Time dummy 0.00
Hours worked -0.32

Total 0.83

Table 6.2.1.: Absolute impact of changes in input variables on total electricity consumption in
the Chemicals sector, 2017 vs. 2050, differences in total are due to rounding errors,
author’s own work

The ranking of the countries by consumption remains unchanged, as Germany and France
remain in first and second position, respectively. It is noteworthy that France is decreasing its
share of overall consumption from 19% to 15%, its share eaten up by Germany (increase from
51% to 57% in 2050). All other countries have similar shares in the comparison of 2017 to 2050.

When breaking down overall developments on the different indicators, it becomes evident
that assets once again are the main driver of electricity consumption: Of the total increase of
approximately 1.3 Mtoe, 0.7 Mtoe are driven by the development of assets. This compares to
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0.5 Mtoe for chlorine production. Hours worked are decreasing overall electricity demand. For
details see table 6.2.1.

Note that this analysis is based on the interaction of different indicators in the different models.
In- and exclusion of certain indicators can impact results by taking importance (i.e. decreasing
the coefficient) from another input, and vice versa. Therefore, the split of effects on indicators
should be considered indicative rather than a direct contribution of certain effects to overall
consumption.
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6.3. Pulp & Paper

6.3.1. Assumptions

As described in 6.1, assets are expected to develop according to the investment forecast by
Oxford Economics, and hours worked according to the trend of population forecast and hours
worked per employee.

With regards to the input of raw material, the approach is based on the theoretical limits of
paper recycling. According to EPRC 2017, the "current theoretical limit" of recovered paper
utilisation is 78%. However, this figure has to be considered within the context of European paper
production, with a focus on two important aspects: Availability of resources and reusability of
recovered paper.

Some countries (especially in Scandinavia) possess extensive wood resources and produce
virtually all of their paper from primary fibres. In 2017, the utilisation rate for recovered paper
in Finland was just 5% (Finnish Forest Industries 2020 and FAO 2019). However, Finland exports
more than 95% of its production (2016, Finnish Forest Industries 2020). Therefore, the used
paper cannot be recycled in Finland. In other countries (such as e.g. the Netherlands), paper
can be produced from recovered paper that is being recycled in the country, or even imported
(in 2019, the Netherlands imported almost 6 Million tonnes of pulp and waste paper, according
to Eurostat 2020). This enables a recycling rate of more than 78%.

Further, depending on the type of paper, reusability differs. On average, fibres can be reused
between four and six times, before losing their properties (Schaffrath 2020). Some papers, such
as hygiene papers, cannot be recycled at all (Blanco, Miranda, and Monte 2013). This is the
reason for the overall theoretical utilisation limit of 78%.

Given these facts, the following assumptions were made:

1. Countries that currently exceed the theoretical maximum will maintain their utilisation
rate, due to imports of recovered paper from other countries (Netherlands).

2. Countries that according to the trend of their utilisation rates would exceed an extended
theoretical limit of 80% before 2050 reach 80% utilisation rates and then maintain this share
(Germany by 2021, France by 2041). Note that the current theoretical limit can be extended
through different measures, such as enhanced recycling, sorting and improvements in
production technologies (ibid.).

3. Countries that according to their trend do not reach the theoretical limit will produce
paper from recovered paper according to this trend (Austria, Belgium).

This utilisation rate will be applied to overall paper consumption, as per the per-capita con-
sumption forecast by Tissari 2012 and the population forecast by Eurostat 2020, assuming a
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constant relation of supply from in-country production and imports, providing the usage of
recovered paper.

The same calculation was done to forecast future usage of primary fibres, applying a rate of
100% minus the recovered paper utilisation rate calculated above.

Finally, it was assumed that the input of non-fibrous materials develops independently from
the use of fibres, according to the overall paper consumption trend.

6.3.2. Results

Figure 6.3.1 displays the development of electricity demand by the Pulp & Paper sectors in
the five countries and in total. The model suggests that electricity consumption in the Pulp &
Paper sectors of the five countries will decrease by -6% through 2050, or -0.20% annually. In the
period through 2025, consumption is forecast to increase slightly by 0.15 Mtoe, but decreases
by more than 0.35 Mtoe between 2025 and 2050, as figure 6.3.2 shows.

The decrease is driven by Germany, with a decrease of -0.2 Mtoe by 2050. Austria is the
strongest winner, with an increase of 0.08 Mtoe.
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Figure 6.3.1.: Forecasting results for electricity consumption Pulp & Paper sectors through 2050
in the five countries and total, author’s own work

The German Pulp & Paper sector is forecast to decrease its electricity consumption by -11%
(-0.21 Mtoe) between 2017 and 2050, or an average annual -0.36%. Between 2017 and 2020,
consumption increases slightly, as figure 6.3.1 suggests. This increase is however consumed
shortly thereafter. Assets are the most important driver for the overall decrease, with recycling
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Figure 6.3.2.: Forecasting results for electricity consumption Pulp & Paper sectors through 2050
in the five countries and total for milestone years, author’s own work

paper consumption, first going against the trend, from 2023 decreases as well, along with an
overall decrease in forecast paper consumption.

France’s Pulp & Paper sector will decrease its electricity consumption by -18% (-0.12 Mtoe)
between 2017 and 2050, an average annual -0.58%. As France is forecast to decrease its overall
paper consumption, input of all raw materials drives the decrease, with decreased consumption
of primary fibres causing the main share.

The modelling suggests that Belgium increases its electricity consumption by 22% by 2050, an
average increase of 0.6%. This effect is mainly due to a decrease in working hours, suggesting
that more workers are replaced by machines, thus increasing electricity demand. Towards the
end of the time horizon however, the increase is virtually zero, as figure 6.3.1 shows.

Unlike Belgium, the Netherlands are forecast to decrease their Pulp & Paper sector’s electricity
consumption, by -8% until 2050 (the equivalent of -0.02 Mtoe, -0.26% annually). Consumption
rises until 2025, before decreasing until 2050. This unsteady development is carried by the
development of assets, as per the Oxford Economics investment forecast. It results in assets
rising through 2025, and decreasing thereafter.

The Austrian forecast suggests an increase of electricity consumption in the Pulp & Paper
sector of 20% (0.08 Mtoe) by 2050, an annual increase of 0.56%. As figure 6.3.1 suggests, this
increase is relatively steady over the whole time horizon. Overall, the main driver for this
increase are decreasing hours worked, even though until 2020 this effect is outweighed by
increased consumption of non-fibrous materials and pulp.
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As per table 6.3.1, the strongest driver for an increase in electricity is hours worked, which
suggests that the trend of replacing manpower with electricity-fuelled machines will continue
through 2050. On the other hand, the negative effect of a decrease in assets outweighs this effect.
Note that this is not necessarily contradictory: It is possible that human labour is replaced in
one place, when in another a company closes its doors, leading to an overall decrease in assets
despite machines replacing human workers.

Indicator Change 2017 - 2050 [Mtoe]

Hours worked 0.18
Recycling paper 0.05
Time -0.02
Non-fibrous materials -0.06
Pulp -0.12
Assets -0.20

Total -0.24

Table 6.3.1.: Absolute impact of changes in input variables on total electricity consumption,
2017 vs. 2050, author’s own work

Again, there are certain sector-specific limits to this analysis. Notably, the assumption that
paper production is going to move in parallel to paper consumption is a strong one, and
especially for smaller, net importing countries subject to uncertainty. Further, it should be
noted that the shares of different paper products might change more significantly than can be
reflected in this work. It is possible that graphical and hygiene papers become more important
in the future, both of which are relatively intensive in terms of additional materials, and thus
more difficult to recycle (if not entirely impossible). This might lead to recycling rates below
the rates assumed in this forecast, and potentially more complex (and thus electricity-intensive)
re-pulping processes.

53



6. Forecasting

6.4. Non-metallic Minerals

6.4.1. Assumptions

The assumptions for future development of the independent variables can be split in the two
product categories, glass (for Germany) and cementitious products. For the glass sector, assump-
tions on the development of future use of recycled glass as most important indicator had to be
made. Glass For Europe 2020 suggest that the share of recycled glass in total glass production
can be increased by 40% by 2050. It was therefore assumed, that total glass production in Ger-
many would develop according to the logarithmic trend of historical production. The increase
of 40% was applied to the historically observed ratio of recycled glass consumption divided by
total glass production. Multiplying the assumed development of total glass production with
this share, consumption of recycled glass was forecast.

For the products 23.5 and 23.6 of the PRODCOM classification, the following assumptions were
made:

• Both CEMBUREAU 2013 and MPA 2013 assume a flat development of overall cement
production through 2050.

• According to ibid., up to 30% of conventional raw materials for clinker production, such
as limestone and clay, could be replaced by alternative materials, such as fly ash or
slag ("cementitious substitution"). This decrease was applied to the conventional inputs
limestone and gypsum.

• To compensate for this decrease, an increase in the use of substitutes of the same size
(weight) was estimated, while keeping 2017 shares of single materials in overall substitute
weight steady (e.g. in 2017, the share of fly ash in overall substitutes in the Austrian
cement production was 9%, to be kept constant, while overall use of substitutes is forecast
to increase by 19.5%).

• Sand & gravel will remain essential to the production of concrete from cement. It is
therefore assumed that their share is going to move in parallel to overall production of
cement.

There are several limitations to these assumptions, which are discussed here and will be reflected
in the scenario-building section. First, in Germany, the share of recycled glass has decreased
over the last years, rather than increased. A potential explanation is that Germany is already
quite developed in the use of recycling material in glass production. In the scenario section, a
scenario with a lower share of recycled glass will therefore be introduced.

Second, the assumption that cement production remains constant is a strong one, and the actual
development could deviate into both directions: On the one hand, the European Non-metallic
Minerals industry, and especially the energy-intensive production of cement is subject to strong
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international competition, given that cement is a standardised product and can therefore easily
be produced in countries outside of the EU. On the other hand, worldwide demand for concrete
has increased strongly over the last decades, and might increase another 12 to 23% by 2050,
according to IEA 2018a, with Europe potentially contributing to this increase. The scenario
section will therefore reflect these potential development paths.

6.4.2. Results

As displayed in figure 6.4.1, overall electricity consumption in the Non-metallic Minerals sector
is forecast to decrease, by -10% (-0.23 Mtoe) through 2050. Germany is bound to decrease its
consumption by -0.5 Mtoe by 2050, due to increased levels of recycled glass used. France is
taking the lead in terms of electricity consumption, despite decreasing its electricity demand by
-0.1 Mtoe (-14%). Austria, driven by increased electrification (i.e. investment in assets), increases
its electricity consumption by 0.25 Mtoe (+145%). Belgium and the Netherlands increase their
electricity consumption by 43% (0.1 Mtoe) and 15% (0.02 Mtoe), respectively.
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Figure 6.4.1.: Forecasting results for electricity consumption Non-metallic Minerals sectors
through 2050 in the five countries and total, author’s own work

For all countries, the trend is relatively stables, as figure 6.4.2 shows. Towards mid-century, the
decrease in France tends to dissolve. At the same time, the steep increase in Austria flattens
out towards 2050.

The strongest driver for decreased electricity demand is a decrease in use of the energy-intensive
raw material limestone, potentially to be replaced by less intensive substitutes. The increased
usage of recycled glass, reducing electricity consumption, plays an important role as well.
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Figure 6.4.2.: Forecasting results for electricity consumption Non-metallic Minerals sectors
through 2050 in the five countries and total for milestone years, author’s own
work

Investment into machines and electrification are driving the opposing effect, particularly in
Austria, that is leading the technological change in the Non-metallic Minerals sector in Europe.

Indicator Change 2017 - 2050 [Mtoe]

Assets 0.17
Sand & gravel 0.03
Time 0.01
Gypsum -0.01
Substitutes 0.00
Hours worked -0.08
Recycled glass -0.18
Limestone -0.19

Total -0.22

Table 6.4.1.: Absolute impact of changes in input variables on total electricity consumption,
2017 vs. 2050, author’s own work

Note that the assumptions made on the development of input variables are strong. New
technologies such as completely electrified cement production, alongside lower increases of
recycled glass consumption can potentially increase electricity consumption significantly. While
generally an electrification trend of existing installations can be observed, the macroeconomic
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pressure and use of less electricity-intensive raw materials decrease overall industrial activity
and thus - directly and indirectly - electricity consumption.

6.5. Summarised results

Total electricity demand in the five countries and four sectors analysed in this thesis is forecast
to increase slightly by 0.4% (0.1 Mtoe) through 2050. The development for specific countries
and sectors looks however very different from this, as this section shows.

6.5.1. Results by country

While Austria is expected to experience an increase of 30% (0.4 Mtoe) in electricity consumption,
France is forecast to decrease its demand by -24% (-1.2 Mtoe). The model results further suggest
that Germany will experience the strongest absolute increase (0.9 Mtoe, +8%), Belgium will
increase its consumption by 0.1 Mtoe (+6%) and the Dutch demand will decrease (-0.2 Mtoe,
-11%). Figure 6.5.1 shows the absolute development of electricity consumption by country as
predicted by the model.

The significantly different development in the specific countries could be due to their current
structure. In 2018, the manufacturing sector in France contributed only 11% to total gross
value added, according to data from Eurostat 2020. This is the lowest share among the five
countries, while Germany, with a contribution of 23%, is clearly more reliant on the industrial
sector. Potentially, this enables France to switch away from industrial production, especially
for products that can easily be standardised, so production can be externalised, and the finished
products imported. Note that France is expected to experience the most significant decrease in
electricity consumption in the Base Metals sector.

The development described above is not linear, as figure 6.5.2 shows. Total demand, driven by
Germany, increases from 2017 to 2030, then falls slightly (while German demand stagnates)
until 2040, and increases again through 2050.

6.5.2. Results by industry

The strongest gainer among the industrial sub-sectors is the Chemicals sector, increasing its
electricity demand by 8% (0.8 Mtoe). On the other hand, the Non-metallic Minerals sector is
forecast to decrease its demand by -10% through 2050 (-0.2 Mtoe). Base Metals (-0.2 Mtoe, -4%)
and Pulp & Paper (-0.2 Mtoe, -6%) are forecast to decrease their energy consumption as well, as
figure 6.5.3 shows.
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Figure 6.5.1.: Forecasting results for electricity consumption for the industrial sectors by country
through 2050, author’s own work
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Figure 6.5.2.: Forecasting results for electricity consumption for the industrial sectors by country
through 2050 for milestone years, author’s own work

Interestingly, the Chemicals sector is the one with the most diverse value chain, and also
the one that, between 2018 and 2050, is going to be the subject of more than 55% (€ 816bn,
2015 prices) of the total investment (€ 1,494bn) into any of the four sectors, according to data
from OE 2020. One possible explanation for this is the commitment of the countries, to keep
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high-quality (and thus high-profit) industries within the EU, whereas the production of other
products, such as steel or cement, could be shifted to less economically developed regions of
the world.
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Figure 6.5.3.: Forecasting results for electricity consumption for all countries by industrial
sector through 2050, author’s own work

Again, the development is not steady for all sectors. While the Base Metals sector first decreases
its consumption to 2030, demand slightly increases afterwards. The Chemicals sector is the
only sector to experience relatively steady growth through 2050, as per figure 6.5.4.

With regards to the main drivers, one central message for sure is that labour input will keep on
being substituted by automated processes, driving electricity demand, as suggested by table
6.5.1. Raw materials on the other hand have, in total, a negligible effect on demand. Note that
this is true for the total figure only, and depends to a large extent on the sector and specific
material included in the model setup.
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Figure 6.5.4.: Forecasting results for electricity consumption for all countries by sector through
2050 for milestone years, author’s own work

Indicator Change 2017 - 2050 [Mtoe]

Assets 1.10
Hours worked -0.59
Total raw materials -0.01
Time 0.05

Total 0.55

Table 6.5.1.: Absolute impact of changes in input variables on total electricity consumption, all
countries and industries, 2017 vs. 2050, author’s own work
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The assumptions fed into the forecast of course are not a given, and depending on macroe-
conomic factors, political measures and technology development, the results of the forecast
are subject to uncertainty. Therefore, apart from the Base case (base), four scenarios were
implemented, describing potential pathways based on a variable set of assumptions.

7.1. Scenario description

The four scenarios are based on assumptions on political measures and electrification:

• The Electrification (elec) scenario describes a pathway aiming to increase the share of
electricity in total energy demand, while improving energy efficiency and supporting
the development of renewable energy sources.

• The LowAmbition (low) scenario reflects the Business as Usual pathway, with no increased
ambition towards climate neutrality and stagnating investment into less carbon-intensive
technologies.

• The Max (max) scenario combines all effects driving electricity demand from the Base
case, and the Electrification and Low Ambition scenarios described above. For instance,
the use of scrap glass in the Non-metallic Minerals industry decreases electricity demand,
but is expected to increase in the Electrification scenario, thus decreasing expected
electricity consumption. In the Max scenario, the share of recycling glass in total glass
production is therefore assumed to decrease.

• The Min (min) scenario reflects the combination of all potential pathways decreasing
electricity demand, equivalent to the Max scenario.

Table A.4.1 in the annex provides an overview of the changes to the base case assumptions
made in order to model the scenarios. It includes both reasoning for the assumption, and
quantification of the assumed variation. This approach is based on the methodology presented
by Gausemeier and Plass 2014.
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7.2. Scenario results

7.2.1. Overview of results for all sectors and countries

As per figure 7.2.1, the Base case is showing the most stable development, with a Compund
Annual Growth Rate (CAGR) of +0.05%. The Low Ambition scenario moves very close to the
base case, with a CAGR of ±0.0%. The electrification scenario shows a moderate growth of
+0.47% annually. In the Max scenario, the CAGR is (naturally) the highest (+0.90%). Finally, the
Min scenario shows negative growth of -0.41% per year.
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Figure 7.2.1.: Electricity consumption by scenario, total of all countries and sectors, author’s
own work

It becomes evident that the two-sided effects in the Low Ambition scenario, as compared to
the Base case, yield a very similar development in overall electricity consumption. For some
sectors, such as the Chemicals sector, the decrease in investment assumed for the Low Ambition
scenario is balanced by an increase in working hours, while raw materials have a negligible
effect. As a consequence, the CAGR in both scenarios for the overall Chemicals sector is almost
the same, as figure 7.2.2 shows. The Non-metallic Minerals industry, on the other hand, shows
a stronger CAGR in the Low Ambition scenario, due to increased material consumption. Finally,
the Pulp & Paper sector shows a stronger decrease in electricity consumption in the Low
scenario.

62



7. Scenarios

base elec low max min

−1

−0.5

0

0.5

1

Scenario

C
A

G
R

[%
]

Primary Metals Chemicals Pulp & Paper Non-metallic Minerals Total

Figure 7.2.2.: CAGR by sector and and scenario, all countries, author’s own work

7.2.2. Exemplary results

While the overall results can be used to reach a deeper understanding for the development
pathways in the different sectors, they differ quite significantly in terms of both direction and
interpretation for the individual countries. This will be illustrated at the example of different
models and scenarios in the following.

Primary Metals - DE vs. NL

The assumptions in the scenarios are based on the absolute effect of a variable on total electricity
consumption. E.g., in the Primary Metals sector, assets have an overall strongly negative effect
on electricity consumption, as shown in figure 5.5.1. For the individual countries, however,
this is not necessarily true. The German model on the one hand suggests a negative influence,
but in the Netherlands, the coefficient is positive, suggesting that electricity demand increases
when assets are increased. This, of course, is due to the nature of the model, as it takes into
account historical data to fit the model. Countries for which no steel is produced in EAFs, no
negative impact could be observed - so the coefficient is positive.

In the scenario building, this leads to difficulties in building of the scenarios. Of course, the
Netherlands could switch their steel production from OBFs to EAFs. Supposedly, as is the case
for Germany, the EAFs would be significantly less capital-intensive than OBFs, and thus assets
would decrease. Given the positive coefficient of assets, this would lead to a decrease rather
than an increase in electricity consumption.
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This effect can be observed in the results of the scenarios. Given that assets are assumed to
decrease from the Low Ambition to the Base to the Electrification scenario, electricity demand
increases by 0.58 Mtoe from the low to the base, and by 0.92 Mtoe from the base to the elec
scenario because of the decrease in assets in Germany, as figure 7.2.3 shows.

Figure 7.2.3.: Electricity demand by German Base Metals sector in 2050 by scenario, and break-
down of effects by input, author’s own work

Given the positive coefficient of assets in the Netherlands however, the effect is reversed, as
figure 7.2.4 shows - electricity demand decreases from the low to the base to the elec scenario,
driven by the decrease in assets. This is a weakness of the approach chosen in this thesis;
naturally, the Netherlands could switch their production to EAFs just like Germany, only that,
in their case, the model would calculate a decrease in electricity consumption, which would
not be the case. On the overall level, due to the higher relative weight of the countries such as
Germany, the effect of this weakness is negligible.

Nonetheless, this effect was mitigated in the setup of the min and max scenarios, to allow for a
more realistic picture of future pathways in the Netherlands, but in other countries as well. As
the min and max scenarios include all effects decreasing (min) or increasing (max) electricity
demand, demand is the lowest in the min scenario, and the highest in the max scenario. In
the Dutch case this means that for the max scenario, the pathway leading towards maximum
assets in 2050 (i.e. the "low" pathway) was chosen.

As figure 7.2.5 shows, this results in electricity demand in the max scenario equalling demand in
the low scenario (likewise min scenario equals elec scenario). In future research, an alternative
option could be the introduction of a new sensitivity to future changes, e.g. by assuming a
similar sensitivity in the Netherlands as in other countries.
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Figure 7.2.4.: Electricity demand by Dutch Base Metals sector in 2050 by scenario, and break-
down of effects by input, author’s own work
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Figure 7.2.5.: Dutch Base Metals electricity consumption in 2050 by scenario, author’s own
work

Pulp & Paper Austria

The Electrification scenario is not necessarily the scenario forecasting highest electricity
demand among the low, base and elec scenarios, as the example of the Austrian Pulp & Paper
sector shows. As per figure 7.2.6, electricity demand is actually the highest in the Base scenario.
But due to a decrease in hours worked in the comparison of the two scenarios (-24% in 2050 in
the elec scenario compared to the base scenario), electricity demand decreases by 0.03 Mtoe in
2050 - despite an increase in assets and raw materials.
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Figure 7.2.6.: Electricity demand by Austrian Pulp & Paper sector in 2050 by scenario, and
breakdown of effects by input, author’s own work

This is due to the approach chosen for the calculation of hours worked in the Electrification
scenario. The base forecast (based on Eurostat population data) was taken as a starting point,
and the overall CAGR was applied to the individual countries. In this case, the overall decrease
of -2.53% for all five countries assumed in the base forecast was applied to the countries
individually. In the case of Austria, this resulted in a -24% lower figure for hours worked in
2050 compared to the base case.

Once again, this effect is taken into account in the max scenario, in which electricity demand
reaches 0.57 Mtoe in 2050, using the low scenario forecast for hours worked, as figure 7.2.7
shows. Alternatively, future analysis could investigate the effect of country-specific CAGRs, to
be applied to the country data.

France

Out of the five countries, France - forecast to decrease its electricity consumption by -24%
between 2017 and 2050 in the Base scenario - sticks out due to this significant decrease.
Breaking down the decrease by factor, it becomes apparent that all inputs, capital, labour and
raw materials, contribute to the overall decrease (capital -0.36 Mtoe, labour -0.46 Mtoe, raw
materials -0.35 Mtoe). Labour, being the strongest driver for the trend, is assumed with very
different pathways in the different scenarios, which has implications for the results in the
scenarios, as shown in figure 7.2.8.

The basic methodology applied to forecast hours worked implies decreases in the range of
-58% to -62% for all four sectors in France - by far the largest overall decreases assumed for all
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Figure 7.2.7.: Electricity demand by Austrian Pulp & Paper sector in 2050 by scenario, including
max and min scenario, and breakdown of effects by input, author’s own work

Figure 7.2.8.: French industrial electricity demand in 2050 by scenario, and breakdown of effects
by input, all sectors, author’s own work

countries. Consequently, the assumption of a stagnation of working hours, as applied in the
Low Ambition scenario, has a significant effect on overall results. Therefore, in the case of
France, the Low Ambition scenario implies the second-to-largest electricity demand by 2050,
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behind the Max scenario. Note however that even in the Max scenario, France is forecast to
decrease its electricity consumption by -0.05 Mtoe in 2050 compared to 2017 (-1%).

The example shows that a single input can be a strong driver of electricity consumption, if
significant changes are assumed, as is the case for labour in France. This could be mitigated
by implementing an sector and country-specific approach to forecast future working hours,
which would have exceeded the scope of this thesis. Nonetheless, given the results found in
the different scenarios, it appears that the French industrial sector will decrease its electricity
consumption in any case.

Summary

The examples above show that the methodology which was applied in this thesis allows
for a very detailed analysis of the individual effect of specific inputs. The effects of varied
assumptions in the different scenarios can be quantified. The potentials for improvement
discussed above can be used to apply a different approach in the scenario building by changing
the methodology the assumptions on future developments of inputs is based on. But even given
the present set of scenarios, a wide range of potential pathways was identified and quantified,
enabling a sound understanding of the impact of changes in assumptions.
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This chapter provides a summary of the findings of the present thesis in section 8.1. In section
8.2, the present results will be compared to the EU Reference Scenario to assess the differences
in results and approach. Section 8.3 explores the limits of the study, and section 8.4 presents
potential for further research based on this thesis.

8.1. Key findings

This thesis suggests two major types of findings: First with regards to electricity consumption,
the overall industrial electricity consumption forecast for the countries and sectors in this
analysis, summarised in 8.1.1. And second, the contribution to scientific work on both, the
analysis of the industrial landscape, and the use of a Cobb-Douglas function to model industrial
electricity demand, as presented in 8.1.2.

8.1.1. Industrial electricity demand

The present work presents an in-depth analysis of the dynamics in various European countries
and industrial sectors with regards to their electricity consumption. In the Primary Metals
industry, the usage of scrap for steel production and the switch from OBFs to EAFs will be a
key driver of electricity demand. The Chemicals industry is to a large extent driven by the
chloralkali electrolysis, which consumes significant amounts of electricity directly, but also
indicates overall industrial acitivity in the Chemicals sector. The Pulp & Paper industry will
depend on the use of recycling paper or alternative raw materials. And finally, the Non-metallic
Minerals sector is subject to electrification that opposes pressure to externalise production.

As discussed in section 5.5, electricity demand in the four industrial sectors and five countries
analysed here is forecast to increase by a total of 3% by 2050. While the Chemicals sector is
bound to increase its consumption, all other sectors will experience a more or less significant
decrease. This is mainly due to automation and electrification, but, depending on the sector
and country, raw materials play an important role as well.

Some countries, such as Austria, are forecast to experience a significant increase in electricity
consumption, whereas especially France is set to decrease its industrial electricity consumption
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by one quarter through 2050. As a main driver, decreased industrial activity was identified,
indicated by decreased investment and decreased use of raw materials.

However, particularly the highly profitable Chemicals sector is expected to increase its demand,
driven by strong invest and electrification. On the other hand, sectors such as Primary Metals
and Non-metallic Minerals will decrease their consumption, partly through efficiency measures,
partly through decreased activity and invest.

8.1.2. Scientific contribution

Historically, the Cobb-Douglas function was the tool of choice for economists to model industrial
output. This work shows that, if adapted accordingly, the model can serve as a basis to model
electricity demand as well, delivering both highly significant results and meaningful insights
into industrial dynamics.

A necessary prerequisite for the application of the function is an understanding for the processes
in the industries, and the main drivers for electricity demand. This yields outstanding model
performances and a quantification of the implications of changes in one of the independent
variables for overall electricity consumption. The quantification of the basic dynamics allows
to build a forecast for industrial electricity demand in the five European countries at the core
of this analysis, which can be extended to additional countries and industries.

8.2. Benchmarking with the EU Reference Scenario

In 2018, the EC published its long-term vision, including eight scenarios for pathways towards
climate neutrality in 2050, ranging from −80% to −100% CO2 emission reductions (EC 2018). The
scenarios indicate a range of +12% to +59% increased electricity consumption in the industrial
sector. This compares to a range of −13% to +34% suggested by the present model results. Note
however, that there are significant differences in both methodology and scope of the studies.

First and foremost, the EU Reference Scenario includes all 28 countries, thus a wider range
of different economies. Second, its methodology is based on the implementation of political
measures and quantification of their effects. And finally, the Reference Scenario includes
effects of emerging technologies, such as hydrogen, which have a non-negligible effect on the
industrial electricity demand.

While the EU provides an accompanying document with more detailed information on the
split between different countries, this date does not reveal the split of electricity consumption
between different sectors or fuels, i.e. only overall electricity consumption by country, and
total energy consumption by the industrial sector of a country.
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The Base case proposed in the present work suggests a CAGR of +0.1% between 2020 and 2030,
and −0.0% thereafter. This compares to a CAGR of overall electricity consumption of +0.5%
from both 2020 to 2030, and 2030 to 2050 for all sectors in the Reference Scenario. However, for
the industrial sector, the Reference Scenario suggests a CAGR of −0.9% from 2020 to 2030 and
−0.3% thereafter. Assuming that a fuel switch from conventional fuels such as coal and oil is
going to materialise between today and 2050, the results are in line with the base case of this
work. Depending on the scale of the fuel switch, the range can expected to be covered by the
proposed scenarios.

8.3. Limits of the work

While the results of this work provide a deep insight into the European industrial landscape,
there are non-negligible limits to this work, exceeding the geographical and sectoral limitations
discussed in chapter 2.

8.3.1. Disruptive innovation

Due to the very nature of the model used in this work, it remains difficult to evaluate the
implications of disruptive innovation, caused by the introduction of a new technology in a
specific sector.

Base Metals

An example for such innovation that might materialise at some point between now and 2050
is hydrogen steel, which was mentioned in section 5.1.4. The introduction of hydrogen steel
could potentially replace EAFs, thus reducing direct electricity consumption in the steel sector
(while on the other hand increasing the demand for electricity to produce hydrogen). For the
production of aluminium, the introduction of inert anodes has the potential to further increase
electricity consumption. (EC 2018)

Chemicals

An important limit of the analysis in the Chemicals sector is the production of hydrogen. This
thesis explicitly does not include an outlook on future production of hydrogen as a means to
store energy, as this was considered to be part of the energy supply rather than the demand
side. Hebling et al. 2019 in their study forecast a potential bandwidth of 800 - 2,250 TWh of
hydrogen demand in Europe in 2050, which compares to 325 TWh in 2015 (FCH 2019).

Pulp & Paper

One trend that in part has been observed in the past already is the electrification of production
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in the Pulp & Paper industry. However, technical innovations such as electrode boilers could
replace conventional thermal heating in the industry, but are not yet economical and waiting
to exceed the prototype stage (Schaffrath 2020).

Non-metallic Minerals

There are two possible downside risks that might significantly change the results of this thesis:
Replacing concrete by renewable materials, such as wood (Hildebrandt, Hagemann, and Thrän
2017); and potential production shift to non-EU countries, especially in the case that no carbon
border tax should be introduced in Europe (CEMBUREAU 2020). Both, replacing concrete as
a construction material and shifting cement production away from Europe could potentially
significantly decrease industrial activity in the Non-metallic Minerals sector and thus decrease
electricity demand.

On the other hand, the Swedish utility Vattenfall and Cementa AB, a Swedish subsidiary of
Heidelberg Cement, in 2017 launched a project to investigate the feasibility of producing
electrified cement, using electricity as only source of energy in the production process, thus
reducing the use of carbon-intensive fossil fuels. The project is yet in the pilot phase, but could
see a first fully electrified cement production plant before 2030. (Bioenergy International 2019,
Cementa AB 2020)

8.3.2. Macroeconomic events

Situations such as the COVID-19 pandemic in 2020 show very clearly that all forecasts are prone
to macroeconomic events such as an economic crisis. According to BDEW 2020, electricity
demand in Germany decreased by -13% in April 2020 compared to March. In France, the decrease
was even stronger (-24%). Industrial production in ETS-covered installations decreased by
-27.6% in April 2020, compared to April 2019 as per the Eurostat industrial production index
(Eurostat 2020).

The model proposed in this thesis is not designed to forecast peaks in electricity consumption -
which is the reason why the year of the financial crisis 2009 was excluded from the training
data set. On the contrary, the model tends to flatten peaks in consumption by including data
that is not subject to high fluctuation, such as fixed capital (assets) and the number of workers
(for the forecast). This on the other hand enables the model to reflect more general trends in
electricity consumption and their long-term effects.

8.3.3. Choice of independent variables

The selection of the independent variables to be included in the model, especially with regards
to raw materials, is not always straight forward. In order to reduce the number of inputs and
thus model complexity, some variables were left out of the model despite being statistically
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significant, if their overall contribution was marginal. Further, variables that were statistically
insignificant despite being important from a theoretical perspective were excluded. As the case
of the Austrian Base Metals sector shows (s. 5.1.3), a balance between significance, logic and
model performance had to be found. Given that especially for smaller countries the database
is insufficient to set up long-term regression models, including all variables for all countries
would have been neither possible nor sensible.

8.3.4. Countries and sectors exceeding the scope of the work

For the sectors exceeding the scope of this work, it seems reasonable to assume that the present
results, representing almost two thirds of industrial electricity demand in the five countries,
can be scaled to the whole economy, as almost all sectors out of the scope are either up- or
down-stream along the industrial value chain from one of the sectors within the scope of this
work (e.g. Wood industry is up-stream for Pulp & Paper production).

However, with regards to other European countries, this analysis cannot be used to scale overall
electricity demand. The industrial sectors in the other European countries differ (partially
significantly) from the countries analysed here.

8.4. Perspectives

Most notably, the scope of this study can be extended to further countries and industries. In
this regards, it is important to note that a reliable database is a prerequisite for building a
meaningful forecast. This, for some industries and countries, could cause a necessity to change
input parameters (e.g. use of production output instead of raw materials). Further, sectors that
are very diverse, such as the Metals Products sector, sometimes prove difficult to split into their
constituents. This has implications for the ability to build meaningful models. Future research
could therefore focus on how to model these very diverse sectors.

As stated above, the model used here is not able to forecast the implications of disruptive
technological changes. Therefore, the emergence of new technologies, such as hydrogen
steel or electrified cement production, are not quantified in the results. Future research could
therefore quantify these trends, and combine the results of this analysis with the present work,
to build a more resilient forecast. In this context, it should once again be pointed out that
hydrogen as a means to store energy was not part of this analysis, as it was judged to belong
to the energy supply rather than the demand side. As discussed above, the production of
hydrogen could potentially significantly increase electricity demand and should therefore not
be neglected in a comprehensive forecast of electricity demand.

From the macro perspective, electricity is only one part - even though one with increasing
importance - of the overall industrial energy demand side. Future research could therefore use
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the approach proposed in this study, and apply the Cobb-Douglas function to model either
total energy demand, or, better, the demand for specific fuels, such as coal, gas or biomass.

Finally, the probably most coherent way of modelling industrial energy or electricity demand
is modelling the specific industrial installations, as this would allow to implement the effects
of new technologies, investments in efficiency, or even plant closures more directly. This
however brings with it not only the problem of a high invest of time and effort, but also of the
scarcity of data on specific production sites and will therefore remain difficult to achieve in
the scientific context in the foreseeable future. The approach chosen in the present work is
therefore considered the most comprehensive and feasible one.
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A. Appendix

A.2. P-values of models by sector

Independent variable Germany France Belgium Netherlands Austria

Assets 0.00 0.00 0.00 0.00 -
Hours worked 0.00 0.00 - - 0.00
Scrap 0.05 - 0.00 - -
Iron ore - 0.05 - - -
Non-ferrous ores - - - 0.00 -
Bauxite - 0.02 - - 0.06
Lead - - - - 0.00
Time dummy 0.00 0.00 - 0.00
Intercept - - - 0.00 -

Table A.2.1.: Overview of model p-values for Base Metals sector by country, author’s own work

Independent variable Germany France Belgium Netherlands Austria

Assets 0.00 0.00 0.03 - 0.00
Hours worked 0.01 - - 0.00 0.01
Chlorine 0.01 0.00 0.04 0.00 0.01
Hydrogen 0.01 - - - -
Nitrogen - 0.02 - - -
Time dummy - - - - 0.00
Intercept 0.00 - 0.04 - -

Table A.2.2.: Overview of model p-values for Chemicals sector by country, author’s own work

Independent variable Germany France Belgium Netherlands Austria

Assets 0.01 - 0.00 0.00 -
Hours worked - - 0.00 - 0.00
Non-fibrous 0.03 0.00 0.00 - 0.00
Pulp - 0.04 - - 0.03
Recovered paper 0.02 0.00 - 0.01 -
Time dummy - 0.01 - - 0.01
Intercept 0.00 0.00 - 0.00 0.00

Table A.2.3.: Overview of model p-values for Pulp & Paper sector by country, author’s own
work
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A. Appendix

Independent variable Germany France Belgium Netherlands Austria

Assets - 0.00 0.02 0.00 0.01
Hours worked 0.02 - 0.01 - -
Limestone 0.00 - - - 0.02
Recovered glass 0.00 - - - -
Sand & gravel - 0.00 0.01 0.01 -
Gypsum - - - - 0.01
Substitutes - - - - 0.03
Time dummy - 0.00 - - -
Intercept - - 0.00 0.00 0.00

Table A.2.4.: Overview of model p-values for Non-metallic Minerals sector by country, author’s
own work
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A.5. Python script

Listing A.1: Python code for setup of models by country and sector, including forecast

#!/usr/bin/env python

# coding: utf−8

# # All countries analysis

# In[1]:

import pandas as pd
import numpy as np
import statistics
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler

# In[2]:

# input data file csv_in_path = ’I:\\PersonalFolders\\SRilling\\Master_Thesis\\Data\\Analysis\\EU\\

↩→ EU_Metals_inputs.csv’

# ’I:\\PersonalFolders\\SRilling\\Master_Thesis\\Data\\Analysis\\PyCharm\\Production_function\\20200220

↩→ _DE_Metals_ProdFunction.csv’

xlsx_in_path = ’I:\\Products␣−␣Power\\2050␣extension\\2050␣Demand\\Industry␣(SebR)\\Inputs\\
↩→ IndustrialDemand_inputs_final.xlsx’

# In[3]:

# input data sheet

data_sheet = ’Data’

# In[4]:

# read data from input file

all_data = pd.read_excel(xlsx_in_path, sheet_name=data_sheet)

# In[5]:

# define all countries and sectors to be analysed − available:

# countries = [’DE’, ’FR’, ’BE’, ’NL’, ’AT’]

# sectors = [’Primary Metals’, ’Chemicals’, ’Pulp&Paper’, ’Non−metallic Minerals’]

# scenarios = [’base’, ’electrification’, ’low ambition’, ’max’, ’min’]

countries = [’DE’, ’FR’, ’BE’, ’NL’, ’AT’]
sectors = [’Primary␣Metals’, ’Chemicals’, ’Pulp&Paper’, ’Non−metallic␣Minerals’]
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scenarios = [’base’, ’electrification’, ’low␣ambition’, ’max’, ’min’]

# In[6]:

# define csv input path for settings: which variables to use

csv_in_path = ’I:\\Products␣−␣Power\\2050␣extension\\2050␣Demand\\Industry␣(SebR)\\Inputs\\
↩→ inputs_use_variables.csv’

# In[7]:

# read settings data from csv file

settings = pd.read_csv(csv_in_path, index_col=[0,1])

# In[8]:

# create dataframe to store results

results_columns = [’Year’, ’Country’, ’Sector’, ’Factor’, ’Value’, ’Scenario’]
consumption_all = pd.DataFrame(columns=results_columns)

# In[9]:

# create dataframe to store statistics

statistics_columns = [’Country’, ’Sector’, ’Factor’, ’Coeff’, ’P−Value’, ’Scenario’]
statistics_all = pd.DataFrame(columns=statistics_columns)

# In[10]:

# create dataframe to store effects

effects_all = pd.DataFrame()

# In[11]:

# iterate through countries and sectors

for scenario in scenarios:
for sector in sectors:

for country in countries:
print(scenario, sector, country)

# store data for sector and country in dataframe

data = all_data.loc[(all_data[’Country’] == country) & (all_data[’Sector’] == sector)
& (all_data[’Scenario’] == scenario)]
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# set year as index

data = data.set_index(’Year’)

# store all input factor names in variable

features = data.Factor.unique()
print(features)

# store all years in variable

years = data.index.unique()

# create new dataframe with yearly values for all factors

df_variables = pd.DataFrame(columns=features)
df_variables = df_variables.assign(Year=years)
df_variables = df_variables.set_index(’Year’)

# itarate through dataframe and fill with values from dataframe data

for index, row in df_variables.iterrows():
for column in df_variables.columns:

sets = data.loc[(data[’Factor’] == column)]
value = sets.loc[index, ’Value’]
df_variables.loc[index, column] = value

# identify independent variables for this country

independent_vars = settings.loc[(country, sector), ’Variables’]
independent_vars = list(independent_vars.split(",␣"))

# define varibales to be taken into account in regression − see above for variables available

target_var = ’el_cons’
use_var = [target_var]
use_var.extend(independent_vars)

# allow for technical progress?

progress = settings.loc[(country, sector), ’Progress’]

# Regression thorugh the origin (RTO) − include constant?

constant = settings.loc[(country, sector), ’Constant’]

# exclude years (outliers)

exclude_years = settings.loc[(country, sector), ’Exclude’]
exclude_years = list(exclude_years.split(",␣"))

# define breakpoint of training vs. forecast

start_forecast = 2018

# drop variables that are not used in the analysis

for var in df_variables.columns:
if not var in use_var:

df_variables = df_variables.drop(var, axis=1)

print(df_variables.head())

# split data in training and forecast

min_year = min(df_variables.index)
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# define forecast data

df_variables_forecast = df_variables.loc[start_forecast:2050, :]
df_variables_forecast = df_variables_forecast.drop(columns=target_var, axis=1)

# define training data

df_variables_train = df_variables.loc[min_year:(start_forecast−1), :]
df_variables_train_complete = df_variables_train

# drop data that is not available

df_variables_train = df_variables_train.dropna()
print(df_variables_train.head())

# exclude outliers

for year in exclude_years:
year = int(year)
print("Length␣before␣removal:␣", df_variables_train.shape[0])
df_variables_train = df_variables_train.loc[df_variables_train.index != year]
print("Length␣after␣removal:␣", df_variables_train.shape[0])

# define method to standardize data

def standardize(dataframe):
columns = dataframe.columns
index = dataframe.index

dataframe = pd.DataFrame(StandardScaler().fit_transform(dataframe))
dataframe.columns = columns
dataframe.index = index

return dataframe

# standardize data

#df_variables_train = standardize(df_variables_train)

# define method to calculate logs

def log_vars(exp_dataframe):
for column in list(exp_dataframe):

log_undefined = False
for index in exp_dataframe.index:

if exp_dataframe.loc[index, column] <= 0:
log_undefined = True

if log_undefined:
exp_dataframe[column] = −exp_dataframe[column].min() + exp_dataframe[column

↩→ ] + 1

# apply log to training data

log_dataframe = np.log(exp_dataframe.astype(np.float64))

return log_dataframe

# calculate log of input variables

df_variables_log = log_vars(df_variables_train)

# define dependent and explanatory variables
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explanatory = df_variables_log.drop(columns=target_var, axis=1)

if constant:
explanatory_const = explanatory.assign(const=1.0)

else:
explanatory_const = explanatory

dependent = df_variables_log[target_var]

print("Explanatory␣variables:")
print(explanatory_const.head())
print("")
print("Dependent␣variable:")
print(dependent.head())

# allow for technical progress

if progress:
explanatory_const = explanatory_const.assign(time=lambda x: np.log(x.index−min(

↩→ explanatory_const.index)+1))
print(explanatory_const.head())

# set up linear regression model

model = sm.OLS(dependent, explanatory_const).fit()
print(model.summary())

# create short result overview

results_summary = pd.DataFrame(round(model.params,3))
results_summary.insert(column=’p−values’, value=round(model.pvalues,3), loc=1)
results_summary = results_summary.rename(columns={0: ’coeff’})

# plot results of regression on scatter plots

fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(model, fig=fig)

# define method to calculate model results

def calculate_results(dataframe, parameters):

# multiply input variabls with parameters

final_vars_log = dataframe.dot(parameters)

# de−log calculated values

final_vars_exp = np.exp(final_vars_log)

return final_vars_log, final_vars_exp

# calculate results

params = model.params
explained_log, explained = calculate_results(explanatory_const, params)
print(explained.head())

# plot model vs real data

x_values = df_variables_train.index

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,6))
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ax1.plot(x_values, df_variables_train[target_var], color="black", label="actual␣values")
ax1.plot(x_values, explained, color="red", label="estimated␣values")
ax1.set_title(target_var + "␣−␣real␣vs.␣estimation")
ax1.set_xlabel("Year")
ax1.set_ylabel("Final␣energy␣consumption")
ax1.legend()

ax2.plot(x_values, dependent, color="black", label="actual␣values")
ax2.plot(x_values, explained_log, color="red", label="estimated␣values")
ax2.set_title(target_var + "␣−␣real␣vs.␣estimation␣(log)")
ax2.set_xlabel("Year")
ax2.set_ylabel("Final␣energy␣consumption")
ax2.legend()

plt.show()

# define method to calculate forecast

def calculate_forecast(dataframe, parameters):

# calculate log

dataframe_log = log_vars(dataframe)

# add constant to forecast

if constant:
dataframe_log = dataframe_log.assign(const=1.0)

# allow for technical progress

if progress:
dataframe_log = dataframe_log.assign(time=lambda x: np.log(x.index−min_year+1))

# calculate log results

final_vars_log = dataframe_log.dot(parameters)

# calculate de−log results

final_vars = np.exp(final_vars_log)

return final_vars, final_vars_log

# calculate forecast

forecast, forecast_log = calculate_forecast(df_variables_forecast, params)

# plot forecast results

x_values = df_variables_forecast.index

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,6))

ax1.plot(x_values, forecast, color="black", label="estimated␣values")
ax1.set_title(target_var + "␣−␣forecast")
ax1.set_xlabel("Year")
ax1.set_ylabel("Final␣energy␣consumption")
ax1.legend()

ax2.plot(x_values, forecast_log, color="black", label="actual␣values")
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ax2.set_title(target_var + "␣−␣forecast")
ax2.set_xlabel("Year")
ax2.set_ylabel("Final␣energy␣consumption")
ax2.legend()

plt.show()

# create dataframe containing all modelled data (past and forecast)

total = explained.append(forecast)

# plot total development vs. real data

x_values = total.index

fig, (ax1) = plt.subplots(1, 1, figsize=(20,6))

ax1.plot(x_values, total, color="red", label="modelling␣result")
ax1.plot(df_variables_train.index, df_variables_train[target_var], color="black", label="actual␣

↩→ values")
ax1.set_title(target_var + "␣−␣real␣and␣forecast")
ax1.set_xlabel("Year")
ax1.set_ylabel("Electricity␣consumption␣[Mtoe]")
ax1.legend()

plt.show()

# define method to calculate specific effects

def calculate_effects(dataframe, params, calc_result):

# add constant to forecast

if constant:
dataframe = dataframe.assign(const=1.0)

# allow for technical progress

if progress:
dataframe = dataframe.assign(time=lambda x: np.log(x.index−min_year+1))

change = pd.DataFrame(index=df_variables_forecast.index, columns=dataframe.columns)

for index, row in change.iterrows():

for column in change.columns:
change.loc[index, column] = ((dataframe.loc[index, column] − dataframe.loc[(index

↩→ −1), column]) /
dataframe.loc[(index−1), column])

impact_rel = pd.DataFrame(index=change.index, columns=change.columns)

for index, row in impact_rel.iterrows():
impact_rel.loc[index, ’total’] = ((calc_result[index] − calc_result[(index−1)]) / calc_result

↩→ [(index−1)])
for column in impact_rel.columns:

if column == ’total’:
continue

else:
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impact_rel.loc[index, column] = (change.loc[index, column] ∗ params[column])

if constant:
impact_rel = impact_rel.drop(columns=’const’, axis=1)

impact_abs = pd.DataFrame(index=impact_rel.index, columns=impact_rel.columns)

for index, row in impact_abs.iterrows():
for column in impact_abs.columns:

impact_abs.loc[index, column] = (impact_rel.loc[index, column] ∗ calc_result[index
↩→ −1])

impact_rel = impact_rel.assign(Country=country)
impact_rel = impact_rel.assign(Effect="rel")
impact_rel = impact_rel.assign(Sector=sector)
impact_rel = impact_rel.assign(Scenario=scenario)
impact_abs = impact_abs.assign(Country=country)
impact_abs = impact_abs.assign(Effect="abs")
impact_abs = impact_abs.assign(Sector=sector)
impact_abs = impact_abs.assign(Scenario=scenario)

return impact_rel, impact_abs

# calculate impact

impact_rel, impact_abs = calculate_effects(df_variables.drop(columns=target_var, axis=1), params,
↩→ total)

#print(impact_rel)

#print(impact_abs)

effects_all = effects_all.append(impact_rel)
effects_all = effects_all.append(impact_abs)

# join actual data with forecast

past_forecast = df_variables_train_complete[target_var].append(forecast)

# create dataframe with current results

consumption_current = pd.DataFrame({’Year’:years,
’Country’:country,
’Sector’:sector,
’Factor’:target_var,
’Value’:past_forecast,
’Scenario’:scenario})

# include current results in overall results dataframe

consumption_all = consumption_all.append(consumption_current, ignore_index=True)

# print total and annual growth

print(country,":")
print(’Difference:␣’, round((total[2050]−total[2017])/total[2017]∗100,2), ’%’)
print(’Avg.␣annual␣growth:␣’, round(statistics.mean(impact_rel.total)∗100,2), ’%’)

# print summarized results

print(results_summary)

# create dataframe with current statistical results

101



A. Appendix

statistics_current = pd.DataFrame({’Country’:country,
’Sector’:sector,
’Factor’:results_summary.index,
’Coeff’:results_summary[’coeff’],
’P−Value’:results_summary[’p−values’],
’Scenario’:scenario})

# add Log−Likelihood Value to statistics results

statistics_current = statistics_current.append({’Country’:country,
’Sector’:sector,
’Factor’:’LLF’,
’Coeff’:model.llf}, ignore_index=True)

# add adj. R2 Value to statistics results

statistics_current = statistics_current.append({’Country’:country,
’Sector’:sector,
’Factor’:’R2_adj’,
’Coeff’:model.rsquared_adj}, ignore_index=

↩→ True)

statistics_all = statistics_all.append(statistics_current, ignore_index=True)

## end of loop over countries and sectors

# In[12]:

consumption_all.head()

# In[13]:

csv_out_path = ’I:\\Products␣−␣Power\\2050␣extension\\2050␣Demand\\Industry␣(SebR)\\Outputs\\
↩→ IndustrialDemand_results.csv’

# In[14]:

consumption_all.to_csv(csv_out_path)

# In[15]:

csv_out_path_stats = ’I:\\Products␣−␣Power\\2050␣extension\\2050␣Demand\\Industry␣(SebR)\\Outputs\\
↩→ IndustrialDemand_results_stats.csv’

# In[16]:
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statistics_all.to_csv(csv_out_path_stats)

# In[17]:

csv_out_path_effects = ’I:\\Products␣−␣Power\\2050␣extension\\2050␣Demand\\Industry␣(SebR)\\Outputs\\
↩→ IndustrialDemand_results_effects.csv’

# In[18]:

effects_all.to_csv(csv_out_path_effects)

# In[19]:

print(’−−−−−−−−−−−−−−−−−−−−done−−−−−−−−−−−−−−−−−−−−−−’)
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